
CMSC 23000
Winter 2006

Operating Systems Project 2
January 25

RCX memory management
Due: Sunday February 5 at 10pm

1 Introduction

This project is the first part of the RCX kernel project. The goals of this project are two:

1. Successfully compile, load, and run code using the RCX simulator.

2. Implement a memory management library for your kernel.

2 The project

The main task of this project is to implement the following functions:

void kmem_init ();
Initialize the memory subsystem.

void *malloc (size_t sz);
Allocate sz bytes of memory aligned on a word (2-byte) boundary. If there is insufficient
memory available, then return 0.

void free (void *p);
Free the memory object referenced by p, which should have been allocated by a malloc.
This function should accept null pointers.

Programs are loaded at address 0x8000; you can use the global symbol eng to determine the end
of the code and statically allocated data (i.e., the expression &end) is the address of the first word
following your program in RAM. Handout 3 describes the memory layout of the RCX processor in
more detail.

Your memory subsystem will need to keep track of free blocks of memory and be able to coa-
lesce adjacent free blocks. We recommend using a first-fit strategy for allocating memory, but you
could also try a best-fit approach. Remember that memory is tight on the RCX and that you cannot
afford too much space overhead.

Make sure that you have committed your final version by 10pm on Sunday, February 5. Using
Doxygen, generate the documentation for your code. Make sure that it includes your name!. The
project documentation is due in class on Monday, February 6.



3 Compiling

Since the RCX uses an H8/3292 microcontroller for its processor, we need a cross-compiler to
generate code for it. We have built such a toolchain, which you can find in

/stage/cmsc23000/bin

on the CS department’s Linux machines.1 We will seed your gforge repository with a directory tree
that includes makefiles for compiling your kernel code and test programs. The result of the build
process will be an ASCII S-record file, which will have a srec filename suffix. To test a program,
you give the name of the S-record file as a command-line argument. For example, to compile and
run the test program test01.c in the user directory of the project tree, do the following:

% cd user
% make
% /stage/cmsc23000/bin/rcx-sim test01.rsrc

The simulator will load the program into RAM starting at address 0x8000 and initialize the pc
and sp. You can run the program by using the simulator’s Run button and you can single-step
execution using the Step button. The reset button will reset the pc and sp to their initial values.

4 Grading

Your project will be graded on both correctness (70%) and programming style (30%). The docu-
mentation is evaluated as part of the style component of your grade. Failure to document your code
will result in no credit for the style portion of your grade.

5 Document history

2006-01-30 Changed etext to end..

2006-01-25 Original document.

1We hope to have a version of these tools available on the Macs in the MacLab too.

2


