
CMSC 23000
Winter 2006

Operating Systems Handout 3
January 27

RCX internals
(Revised February 24)

1 Introduction

This document collects together various pieces of information about the hardware in the LegoMind-
storms RCX brick. The RCX uses a Hitachi H8/3292 microcontroller (a member of the H8/3297
family) running at 16MHz. We use the term “RCX” to refer to both the microcontroller and the
other parts of the RCX hardware.

2 Registers

The RCX has eight 16-bit general-purpose registers (r0-r7). These can be used both to address
memory and to hold data. As data registers, they can also be viewed as 16 eight-bit registers (r0h,
r0l, ...). The RCX uses r7 as the stack pointer (sp). It also has a 16-bit program counter (pc) and
an eight-bit condition-code register (ccr).

The C ABI for the RCX uses r6 as the frame (or base) pointer. The first three function argu-
ments are passed in r0, r1, and r2; additional arguments are passed on the stack, and function
results are returned in r0. Registers r4 and r5 are callee-save.

The condition code register is organized as follows:

Bit Name Description
0 C Carry flag
1 V Overflow flag
2 Z Zero flag
3 N Negative flag
4 User bit
5 H Half-carry flag
6 User bit
7 I Interrupt mask bit

Most arithmetic instructions affect the ccr, as do data move instructions. There are also instructions
for performing logical operations on the ccr.



3 Instructions

The RCX is largely a load-store architecture. Most arithmetic instructions work on registers, al-
though it supports some bit operations that work on absolute addresses.1

The RCX processor supports a number of addressing modes:

Mode Description
rn register
@rn register indirect
@(d:16,rn) register indirect with displacement
@rn+ register indirect with post-increment
@-rn register indirect with pre-decrement
@a:8 8-bit absolute (use 0xff as high bits)
@a:16 16-bit absolute
#x:8 8-bit immediate
#x:16 16-bit immediate
@(d:16,pc) PC relative
@@a:8 Memory indirect

Note: when addressing words, the least bit of the address is ignored (i.e., regarded as 0).

4 Memory

The RCX supports byte addressing with a 16-bit address space. The address space includes ROM,
RAM, on-chip RAM, and device registers. These memories are mapped into a 16-bit address space
as follows:

Address range Memory type Contents
0x0000–0x3fff on-chip ROM RCX executive
0x4000–0x7fff Reserved (unmapped)
0x8000–0xfb7f off-chip RAM program and data
0xfb80–0xfd7f Reserved (unmapped)
0xfd80–0xff7f on-chip RAM ROM data
0xfe00–0xff7f on-chip RAM initial program stack
0xff80–0xff87 Reserved (unmapped)
0xff88–0xffff on-chip device registers H8/3293 device registers

5 Interrupts

The RCX hardware supports 23 distinct interrupts (listed in Table 1). This table includes the name,
RAM interrupt-vector location, and short description of each interrupt. When an interrupt occurs,
the RCX hardware handles it as follows:

1. The I bit (bit 7) of the ccr register is tested; if it is set, and the interrupt is not a NMI, then it
is marked as pending and execution continues.

1This operations are used to manipulate the on-chip device registers that are mapped into the address space.

2



Table 1: RCX interrupts

Name RAM vector Description
NMI 0xfd92 Non Maskable Interrupt
IRQ0 0xfd94 Interrupt 0
IRQ1 0xfd96 Interrupt 1
IRQ2 0xfd98 Interrupt 2
ICIA 0xfd9a 16 bit Timer – Input Capture A
ICIB 0xfd9c 16 bit Timer – Input Capture B
ICIC 0xfd9e 16 bit Timer – Input Capture C
ICID 0xfda0 16 bit Timer – Input Capture D
OCIA 0xfda2 16 bit Timer – Output Compare A
OCIB 0xfda4 16 bit Timer – Output Compare B
FOVI 0xfda6 16 bit Timer – Overflow
CMI0A 0xfda8 8 bit Timer 0 – Compare Match A
CMI0B 0xfdaa 8 bit Timer 0 – Compare Match B
OVI0 0xfdac 8 bit Timer 0 – Overflow
CMI1A 0xfdae 8 bit Timer 1 – Compare Match A
CMI1B 0xfdb0 8 bit Timer 1 – Compare Match B
OVI1 0xfdb2 8 bit Timer 1 – Overflow
ERI 0xfdb4 Serial Receive Error
RXI 0xfdb6 Serial Receive End
TXI 0xfdb8 Serial TDR Empty
TEI 0xfdba Serial TSR Empty
ADI 0xfdbc A/D Conversion End
WOVF 0xfdbe Watchdog Timer Overflow

3



saved r6

return PC

interrupted PC

CCR ignored

r6

Stack grows
down

Low addresses

High addresses

Figure 1: Stack layout upon entry in interrupt handler.

2. If the I bit is clear, or the interrupt is an NMI, then the hardware pushes the ccr register
(plus a byte of padding), and the PC.

3. The I bit of the ccr is set.

4. The PC is loaded from the ROM interrupt vector, which contains the address of the dispatch
code, which is also in ROM, for the particular interrupt.

5. The dispatch code saves r6 on the stack, loads the address of the interrupt handler from the
RAM interrupt vector, and then does a jsr to the handler.

6. The interrupt handler runs.

7. Upon return, it restores r6 and does a rte, which restores the ccr and pc to their values at
the time of the interrupt.

Figure 1 gives the state of the stack upon entry to the interrupt handler. Note that the RCX is a
big-endian machine, so the saved ccr register will be at an even address.

To install a handler for an interrupt, one need only store the handler’s address in the interrupt’s
RAM vector location. The ROM also contains a default handler, which just returns to the dispatch
code, at address 0x046a.

Appendix — The H8/300L instruction set

add.b #x:8,rd 8-bit addition
add.b rs,rd 8-bit addition
add.w rs,rd 16-bit addition

4



adds #1,rd 16-bit increment by 1(does not affect ccr)
adds #2,rd 16-bit increment by 2 (does not affect ccr)
addx #x:8,rd 8-bit addition with carry
addx rs,rd 8-bit addition with carry
and #x:8,rd 8-bit logical and
and rs,rd 8-bit logical and
andc #x:8,ccr 8-bit logical and with ccr
band #x:3,@a:8 bit and
band #x:3,@rd bit and
band #x:3,rd bit and
bcc d:8 conditional branch on carry clear (also called bhs)
bclr #x:3,@a:8 bit clear
bclr #x:3,@rd bit clear
bclr #x:3,rd bit clear
bclr rn,@a:8 bit clear
bclr rn,@rd bit clear
bclr rn,rd bit clear
bcs d:8 conditional branch on carry set (also called blo)
beq d:8 conditional branch on equal
bge d:8 conditional branch on greater or equal
bgt d:8 conditional branch on greater than
bhi d:8 conditional branch on high
biand #x:3,@a:8 bit invert and
biand #x:3,@rd bit invert and
biand #x:3,rd bit invert and
bild #x:3,@a:8 bit invert load
bild #x:3,@rd bit invert load
bild #x:3,rd bit invert load
bior #x:3,@a:8 bit invert or
bior #x:3,@rd bit invert or
bior #x:3,rd bit invert or
bist #x:3,@a:8 bit invert store
bist #x:3,@rd bit invert store
bist #x:3,rd bit invert store
bixor #x:3,@a:8 bit invert exclusive or
bixor #x:3,@rd bit invert exclusive or
bixor #x:3,rd bit invert exclusive or
bld #x:3,@a:8 bit load
bld #x:3,@rd bit load
bld #x:3,rd bit load
ble d:8 conditional branch on less or equal
bls d:8 conditional branch on low or same
blt d:8 conditional branch on less than
bmi d:8 conditional branch on minus
bne d:8 conditional branch on not equal
bnot #x:3,@a:8 bit not
bnot #x:3,@rd bit not

5



bnot #x:3,rd bit not
bnot rn,@a:8 bit not
bnot rn,@rd bit not
bnot rn,rd bit not
bor #x:3,@a:8 bit or
bor #x:3,@rd bit or
bor #x:3,rd bit or
bpl d:8 conditional branch on plus
bra d:8 branch always
brn d:8 branch never
bset #x:3,@a:8 bit set
bset #x:3,@rd bit set
bset #x:3,rd bit set
bset rn,@a:8 bit set
bset rn,@rd bit set
bset rn,rd bit set
bsr d:8 branch to subroutine
bst #x:3,@a:8 bit store
bst #x:3,@rd bit store
bst #x:3,rd bit store
btst #x:3,@a:8 bit test
btst #x:3,@rd bit test
btst #x:3,rd bit test
btst rn,@a:8 bit test
btst rn,@rd bit test
btst rn,rd bit test
bvc d:8 conditional branch on overflow clear
bvs d:8 conditional branch on overflow set
bxor #x:3,@a:8 bit exclusive or
bxor #x:3,@rd bit exclusive or
bxor #x:3,rd bit exclusive or
cmp.b #x:8,rd 8-bit compare
cmp.b rs,rd 8-bit compare
cmp.w rs,rd 16-bit compare
daa rd decimal-adjust add
das rd decimal adjust subtract
dec rd 8-bit decrement
divxu rs,rd 16-bit by 8-bit unsigned division ((8+8)-bit result)
eepmov move data to EEPROM
inc rd 8-bit increment
jmp @@a:8 jump
jmp @a:16 jump
jmp @rn jump
jsr @@a:8 jump to subroutine
jsr @a:16 jump to subroutine
jsr @rn jump to subroutine
ldc #x:8,ccr load ccr

6



ldc rs,ccr load ccr
mov.b #x:8,rd 8-bit load signed immediate
mov.b @(x:16,rs),rd 8-bit load
mov.b @a:16,rd 8-bit load
mov.b @a:8,rd 8-bit load
mov.b @rs+,rd 8-bit load
mov.b @rs,rd 8-bit load
mov.b rs,@(x:16,rd) 8-bit store
mov.b rs,@-rd 8-bit store
mov.b rs,@a:16 8-bit store
mov.b rs,@a:8 8-bit store
mov.b rs,@rd 8-bit store
mov.b rs,rd 8-bit register-to-register move
mov.w #x:16,rd 16-bit load immediate
mov.w @(x:16,rs),rd 16-bit load
mov.w @a:16,rd 16-bit load
mov.w @rs+,rd 16-bit load (also called pop, when rs is sp)
mov.w @rs,rd 16-bit load
mov.w rs,@(x:16,rd) 16-bit store
mov.w rs,@-rd 16-bit store (also called push, when rd is sp)
mov.w rs,@a:16 16-bit store
mov.w rs,@rd 16-bit store
mov.w rs,rd 16-bit register-to-register move
mulxu rs,rd 8-bit by 8-bit unsigned multiply (16-bit result)
neg rd 8-bit 2’s complement negation
nop no operation
not rd 8-bit 1’s complement negation (logical not)
or #x:8,rd 8-bit logical or
or rs,rd 8-bit logical or
orc #x:8,ccr 8-bit logical or with ccr
rotl rd 8-bit rotate left
rotr rd 8-bit rotate right
rotxl rd 8-bit rotate with carry left
rotxr rd 8-bit rotate with carry right
rte return from exception
rts return from subroutine
shal rd 8-bit arithmetic left shift
shar rd 8-bit arithmetic right shift
shll rd 8-bit logical left shift
shlr rd 8-bit logical right shift
sleep put processor to sleep
stc ccr,rd 8-bit store from ccr
sub.b rs,rd 8-bit subtraction
sub.w rs,rd 16-bit subtraction
subs #1,rd 16-bit decrement by 1 (does not affect ccr)
subs #2,rd 16-bit decrement by 2 (does not affect ccr)
subx #x:8,rd 8-bit subtract with carry

7



subx rs,rd 8-bit subtract with carry
xor #x:8,rd 8-bit exclusive or
xor rs,rd 8-bit exclusive or
xorc #x:8,ccr 8-bit exclusive or with ccr

8


