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Question 1 Absorbtion Law (10 points)
Show that for any sets A and B, A∩ (A∪B) = A.

Solution: We show that each side of the equation is a subset of the other.

(1) A ⊆ A∩ (A∪B). For any element x ∈ A we have x ∈ A ∨ x ∈ B and hence x ∈ A∪B. It follows
that x ∈ A ∧ x ∈ A∪B, so x ∈ A∩ (A∪B).

(1) A∩ (A∪B) ⊆ A. Suppose x ∈ A∩ (A∪B). Then x ∈ A ∧ x ∈ A∪B, so x ∈ A.

Question 2 Well-ordered sets (10 points)
A well-ordered set is a poset 〈A,≤〉 such that the ordering ≤ is total and well-founded. Show that
every nonempty subset of a well-ordered set A has a least element (which must be unique).

Solution: We know that because 〈A,≤〉 is well-founded, every nonempty subset of A has a minimal
element. We just need to show that if the order is total, a minimal element is also a least element.
Suppose X ⊆ A is nonempty, and a ∈ X is minimal. For any x ∈ X , we know, because the order is
total, that x < a, x = a, or a < x. The first case cannot happen because we have assumed that a is
minimal in X , so either x = a or a < x, i.e. a ≤ x. Since this is true of any x ∈ X , we have shown
that a is the least element of X. (The uniqueness of least elements is a simple consequence of the
definition.)

Question 3 Countable image (15 points)
Suppose f : N→ B is a surjective function. Show that B is countable. (You can assume B 6= /0.)

Alternative Bonus version (15 + 5 points)
Show that if f : A → B is surjective, then there exists an injection g : B → A. Assume A and B are
nonempty.

Solution: We start with the first version, assuming f is a surjective function from N to a set B. Since
f is surjective, for each b ∈ B, the inverse image Xb = f−1({b}) is nonempty, and it is a subset of
N. Since N is well-ordered by the usual ordering, each inverse image sets Xb has a least element,
which we can denote by min(Xb). Therefore the function g : B→ N given by

g(b) = min(Xb)

is well-defined for all b ∈ B. The fact that g is an injection (is one-to-one) follows from the fact that
for two distince elements b1 6= b2 in B, the inverse image sets f−1({b1}) and f−1({b2}) must be
disjoint because f is a function (i.e. a single-valued relation). An element n in Xb1 ∩Xb2 would have
to be mapped to both b1 and b2 by the function f, which is impossible.

Since we have defined an injection g : B→N, it follows that B�N, which means that B is countable,
but not necessarily infinite.

For the Bonus version, we reason in the same way that {Xb |b ∈ B}, where Xb = f−1({b}), is a
family of nonempty subsets of A indexed by B. [Note that if f is a total function, this family is the
partition of A associated with the kernel equivalence relation of f . If f is partial, then it is a partition
of the (strict) domain of f .]



The Axiom of Choice then says that the generalized product of this family,

Πb∈B Xb

is nonempty. We can then take g : B → A to be any element of this generalized product. Such a g
will be injective because for any b ∈ B, g(b) ∈ Xb, and for two distinct elements b1,b2 ∈ B, the sets
Xb1 and Xb2 are disjoint.

Question 4 Monotonic function (10 points)
Suppose A = {a,b} is a two element alphabet ordered by a < b, and let 〈A∗,≤L〉 be the poset of
finite strings over A with the lexicographic ordering on strings. The length function len : A∗ → N
returns the length of a string. Is the len function monotonic with respect to the lexicographic order
on strings and the normal ordering on N? If so, prove it, and if not, give a counterexample.

Solution: We are given that the symbols in the alphabet A are ordered by a < b. It follows that in
the lexicographic ordering on A∗, the string ab precedes the string b, i.e. ab <L b. But len(ab) =
2 > 1 = len(b), so len is not monotonic.

Question 5 Well-founded induction (25 points)
The Ackermann function f : N×N→ N is defined by

f (x,y) = if x = 0 then y+1

else if y = 0 then f (x−1,1)
else f (x−1, f (x,y−1))

Prove that f terminates for all (x,y) ∈ N×N by defining an appropriate well-founded ordering on
N×N and using well-founded induction.

Solution: Take N×N to be ordered by the standard lexicographic ordering:

(x1,y1)≤l (x2,y2) iff x1 < x2 ∨ (x1 = x2 ∧ y1 ≤ y2)

We prove that the Ackermann function terminates for all arguments (x,y) ∈N×N by well-founded
induction over this ordering.

Base case: As the base case, we will take x = 0, rather than just the minimal (actually least) el-
ement (0,0) under the lexicographic ordering, since this condition matches the first clause of the
conditional expression defining the function. When x = 0, we have f (x,y) = f (0,y) = y+1 by the
first line of the definition, so f (x,y) terminates.

Induction case: Assume that x > 0, and that the followiing induction hypothesis holds:

IH : ∀x′,y′ ∈ N.(x′,y′)≤l (x,y)⇒ f (x′,y′) terminates

There are two cases to consider, depending on whether y = 0 or y > 0.

y = 0: In this case, the definition of f tells us that

f (x,y) = f (x,0) = f (x−1,1)

But (x−1,1)≤l (x,y), so by the IH f (x−1,1) terminates, and hence f (x,y) terminates.

y > 0: In this case the third clause of the definition of f applies, so we have

f (x,y) = f (x−1, f (x,y−1))
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We have (x,y−1)≤l (x,y) so the induction hypothesis tells us that the nested recursive call f (x,y−
1) terminates. Let k = f (x,y−1). Now we also have (x−1,k)≤l (x,y), so the inductive hypothesis
tells us that f (x−1,k) = f (x−1, f (x,y−1)) also terminates. Hence f (x,y) terminates, and we are
done.

Question 6 Lattices (30 points)
A poset 〈A,≤〉 is a lattice if for every pair of elements x,y ∈ A (not necessarily distinct), the glb
(greatest lower bound) and lub (least upper bound) of the set {x,y} exist. We use the notation x∧ y
for glb({x,y}), and x∨ y for lub({x,y}). These operations are called the meet and join operations,
respectively.

(a) (5 points) Show that 〈N,≤〉, where≤ is the usual ordering, is a lattice, and give direct definitions
of the ∧ and ∨ operations in terms of familiar operations on numbers.

Solution: 〈N,≤〉 is totally ordered, so given any numbers n and m, we will have n ≤ m or m ≤ n.
The greatest lower bound of n and m will be the lessor of the two numbers, i.e. min(x,y), while the
least upper bound will be the greater of the two, i.e. max(x,y). Hence we have

x∧ y = min(x,y)
x∨ y = max(x,y)

(b) (5 points) Show that for any nonempty set A, the poset 〈P(A),⊆〉 is a lattice, and define the
meet and join operations in terms of set operations.

Solution: For any sets X ,Y ⊆ A, the union X ∪Y is clearly an upper bound of X and Y in the subset
ordering. Suppose Z is another upper bound, so X ⊆ Z and Y ⊆ Z. Then X ∪Y ⊆ Z. Thus X ∪Y is
the least upper bound of X and Y , or X ∨Y = X ∪Y .

On the other hand, we have X ∩Y ⊆ X and X ∩Y ⊆ Y , so X ∩Y is a lower bound of X and Y . And
for any other lower bound Z such that Z ⊆ X and Z ⊆ Y , we have Z ⊆ X ∩Y . Thus X ∧Y = X ∩Y .

(c) (5 points) Consider the poset of partial functions from N to N (denoted N →p N) under the
extension ordering on partial functions (i.e. f ≤ g if f ⊆ g as relations). Show that this poset is not
a lattice.

Solution: Let f = {(0,0)} (the partial function that maps 0 to 0 and is undefined for x 6= 0), and let
g = {(0,1)}. Then there is no single valued function that extends both f and g, so f and g have no
common upper bound, and hence f ∨ g is undefined. Therefore N →p N is not a lattice under the
subset (i.e. function extension) ordering.

For any lattice, the meet and join operations satisfy the following algebraic laws.

x∧ y = y∧ x x∨ y = y∨ x (Commutative)
x∧ (y∧ z) = (x∧ y)∧ z x∨ (y∨ z) = (x∨ (y∨ z) (Associative)
x∧ (x∨ y) = x x∨ (x∧ y) = x (Absorption)

(d) (15 points) Prove the first absorption law holds in any lattice.

Solution: Since x∧ (x∨ y) is the glb of x and x∨ y, it is in particular a lower bound of x, so
x∧ (x∨ y)≤ x. Similarly, x≤ x∨ y, and x≤ x by reflexivity, so x is a lower bound of {x, x∨ y}, and
so x must be less than or equal to the glb of {x, x∨ y}, or x≤ {x, x∨ y}. By antisymmetry, we have
the desired equality.
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Bonus (15 points). A structure 〈L, ∧,∨〉 consisting of a set L and two binary operations ∧ and ∨
on L that satisfy the commutative, associative, and absorption laws given above can also be called a
lattice. Show that for such a structure, an ordering ≤ can be defined on L in terms of the meet and
join operations such that meet is the glb and join is the lub.

Solution: We defined an ordering≤ on L by x≤ y iff x = x∧y (it will turn out that this is equivalent
to defining x≤ y when x∨ y = y). We need to show (a) that this is a partial ordering (i.e. it satisfies
the reflexivity, antisymmetry, and transitivity laws), and (b) that under this ordering x∧ y is the glb
of {x,y} and x∨ y is the lub of {x,y}.

(a). ≤ is a partial order.

Reflexivity: x = x∧ (x∨ (x∧ x)) by the first absorption law, with y replaced by (x∧ x). Then by the
second absorption law, the right hand argument (x∨ (x∧x)) is equal to x. Thus x = x∧x, and hence
x≤ x.

An operation like ∧ that satifies the equation x = x∧ x is said to be idempotent. A
similar proof shows that ∨ is also an idempotent operation.

Antisymmetry: Assume x ≤ y and y ≤ x. Then x = x∧ y and y = y∧ x by the definition of ≤. But
then it follows that x = y by the commutativity of ∧.

Transitivity: Assume x≤ y (so x = x∧ y) and y≤ z (so y = y∧ z). Then we have

x = x∧ y (since x≤ y)
= x∧ (y∧ z) (since y≤ z)
= (x∧ y)∧ z (associativity of ∧)
= x∧ z (since x≤ y)

So we have x≤ z as required.

(b). x∧ y is glb of {x,y}.
We start by showing that x∧ y≤ x.

(x∧ y)∧ x = (x∧ x)∧ y (associativity and communtativity)
= x∧ y (idempotence of ∧)

Hence x∧ y≤ x. Similarly we have x∧ y≤ y. So x∧ y is a lower bound. Suppose z is another lower
bound, implying that z = z∧ x and z = z∧ y. Then z∧ (x∧ y) = (z∧ x)∧ y = z∧ y = z, so z ≤ x∧ y.
Hence x∧ y is the glb.

A “dual” proof shows that that x∨y is the lub of {x,y}, provided that we prove the following lemma.

Lemma: x = x∧ y ⇔ y = x∨ y
Proof: [⇒]: Assume x = x∧y. Then x∨y = (x∧y)∨y = y∨ (y∧x) = y, the first equality following
by commutativity, and the second by the second absorption law. Therefore y = x∨ y.

[⇐]: Assume y = x∨ y. Then x∧ y = x∧ (x∨ y) = x, so x = x∧ y.
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