CMCS 15300-1 — Foundations of Software Midterm Examination Solutions October 27, 2006

Question 1 Absorbtion Law (10 points)

Show that for any sets *A* and *B*, $A \cap (A \cup B) = A$.

Solution: We show that each side of the equation is a subset of the other.

(1) $A \subseteq A \cap (A \cup B)$. For any element $x \in A$ we have $x \in A \lor x \in B$ and hence $x \in A \cup B$. It follows that $x \in A \land x \in A \cup B$, so $x \in A \cap (A \cup B)$.

 $(1) A \cap (A \cup B) \subseteq A$. Suppose $x \in A \cap (A \cup B)$. Then $x \in A \land x \in A \cup B$, so $x \in A$.

Question 2 Well-ordered sets (10 points)

A well-ordered set is a poset $\langle A, \leq \rangle$ such that the ordering \leq is total and well-founded. Show that every nonempty subset of a well-ordered set A has a least element (which must be unique).

Solution: We know that because $\langle A, \leq \rangle$ is well-founded, every nonempty subset of A has a minimal element. We just need to show that if the order is total, a minimal element is also a least element. Suppose $X \subseteq A$ is nonempty, and $a \in X$ is minimal. For any $x \in X$, we know, because the order is total, that x < a, x = a, or a < x. The first case cannot happen because we have assumed that a is minimal in X, so either x = a or a < x, i.e. $a \le x$. Since this is true of any $x \in X$, we have shown that a is the least element of X. (The uniqueness of least elements is a simple consequence of the definition.)

Question 3 Countable image (15 points)

Suppose $f: \mathbb{N} \to B$ is a surjective function. Show that B is countable. (You can assume $B \neq \emptyset$.)

Alternative Bonus version (15 + 5 points)

Show that if $f: A \to B$ is surjective, then there exists an injection $g: B \to A$. Assume A and B are nonempty.

Solution: We start with the first version, assuming f is a surjective function from \mathbb{N} to a set B. Since f is surjective, for each $b \in B$, the inverse image $X_b = f^{-1}(\{b\})$ is nonempty, and it is a subset of \mathbb{N} . Since \mathbb{N} is well-ordered by the usual ordering, each inverse image sets X_b has a least element, which we can denote by $\min(X_b)$. Therefore the function $g: B \to \mathbb{N}$ given by

$$g(b) = \min(X_b)$$

is well-defined for all $b \in B$. The fact that g is an injection (is one-to-one) follows from the fact that for two distince elements $b_1 \neq b_2$ in B, the inverse image sets $f^{-1}(\{b_1\})$ and $f^{-1}(\{b_2\})$ must be disjoint because f is a function (i.e. a single-valued relation). An element n in $X_{b_1} \cap X_{b_2}$ would have to be mapped to both b_1 and b_2 by the function f, which is impossible.

Since we have defined an injection $g: B \to \mathbb{N}$, it follows that $B \leq \mathbb{N}$, which means that B is countable, but not necessarily infinite.

For the Bonus version, we reason in the same way that $\{X_b | b \in B\}$, where $X_b = f^{-1}(\{b\})$, is a family of nonempty subsets of A indexed by B. [Note that if f is a total function, this family is the partition of A associated with the kernel equivalence relation of f. If f is partial, then it is a partition of the (strict) domain of f.]

The Axiom of Choice then says that the generalized product of this family,

$$\prod_{h\in R} X_h$$

is nonempty. We can then take $g: B \to A$ to be any element of this generalized product. Such a g will be injective because for any $b \in B$, $g(b) \in X_b$, and for two distinct elements $b_1, b_2 \in B$, the sets X_{b_1} and X_{b_2} are disjoint.

Question 4 Monotonic function (10 points)

Suppose $A = \{a,b\}$ is a two element alphabet ordered by a < b, and let $\langle A^*, \leq_L \rangle$ be the poset of finite strings over A with the lexicographic ordering on strings. The length function len : $A^* \to \mathbb{N}$ returns the length of a string. Is the len function monotonic with respect to the lexicographic order on strings and the normal ordering on \mathbb{N} ? If so, prove it, and if not, give a counterexample.

Solution: We are given that the symbols in the alphabet A are ordered by a < b. It follows that in the lexicographic ordering on A^* , the string ab precedes the string b, i.e. $ab <_L b$. But len(ab) = 2 > 1 = len(b), so len is not monotonic.

Question 5 Well-founded induction (25 points)

The Ackermann function $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ is defined by

$$f(x,y) = \text{if } x = 0 \text{ then } y + 1$$

$$\text{else if } y = 0 \text{ then } f(x-1,1)$$

$$\text{else } f(x-1, f(x,y-1))$$

Prove that f terminates for all $(x,y) \in \mathbb{N} \times \mathbb{N}$ by defining an appropriate well-founded ordering on $\mathbb{N} \times \mathbb{N}$ and using well-founded induction.

Solution: Take $\mathbb{N} \times \mathbb{N}$ to be ordered by the standard lexicographic ordering:

$$(x_1, y_1) \le (x_2, y_2)$$
 iff $x_1 < x_2 \lor (x_1 = x_2 \land y_1 \le y_2)$

We prove that the Ackermann function terminates for all arguments $(x, y) \in \mathbb{N} \times \mathbb{N}$ by well-founded induction over this ordering.

Base case: As the base case, we will take x = 0, rather than just the minimal (actually *least*) element (0,0) under the lexicographic ordering, since this condition matches the first clause of the conditional expression defining the function. When x = 0, we have f(x,y) = f(0,y) = y + 1 by the first line of the definition, so f(x,y) terminates.

Induction case: Assume that x > 0, and that the following induction hypothesis holds:

IH:
$$\forall x', y' \in \mathbb{N}. (x', y') <_{t} (x, y) \Rightarrow f(x', y')$$
 terminates

There are two cases to consider, depending on whether y = 0 or y > 0.

y = 0: In this case, the definition of f tells us that

$$f(x,y) = f(x,0) = f(x-1,1)$$

But $(x-1,1) \le l(x,y)$, so by the IH f(x-1,1) terminates, and hence f(x,y) terminates.

y > 0: In this case the third clause of the definition of f applies, so we have

$$f(x,y) = f(x-1, f(x,y-1))$$

We have $(x,y-1) \le_l (x,y)$ so the induction hypothesis tells us that the nested recursive call f(x,y-1) terminates. Let k = f(x,y-1). Now we also have $(x-1,k) \le_l (x,y)$, so the inductive hypothesis tells us that f(x-1,k) = f(x-1,f(x,y-1)) also terminates. Hence f(x,y) terminates, and we are done.

Question 6 Lattices (30 points)

A poset $\langle A, \leq \rangle$ is a *lattice* if for every pair of elements $x,y \in A$ (not necessarily distinct), the glb (greatest lower bound) and lub (least upper bound) of the set $\{x,y\}$ exist. We use the notation $x \wedge y$ for glb($\{x,y\}$), and $x \vee y$ for lub($\{x,y\}$). These operations are called the *meet* and *join* operations, respectively.

(a) (5 points) Show that $\langle \mathbb{N}, \leq \rangle$, where \leq is the usual ordering, is a lattice, and give direct definitions of the \wedge and \vee operations in terms of familiar operations on numbers.

Solution: $\langle \mathbb{N}, \leq \rangle$ is totally ordered, so given any numbers n and m, we will have $n \leq m$ or $m \leq n$. The greatest lower bound of n and m will be the lessor of the two numbers, i.e. min(x,y), while the least upper bound will be the greater of the two, i.e. max(x,y). Hence we have

$$x \wedge y = min(x, y)$$

 $x \vee y = max(x, y)$

(b) (5 points) Show that for any nonempty set A, the poset $\langle \mathscr{P}(A), \subseteq \rangle$ is a lattice, and define the meet and join operations in terms of set operations.

Solution: For any sets $X,Y\subseteq A$, the union $X\cup Y$ is clearly an upper bound of X and Y in the subset ordering. Suppose Z is another upper bound, so $X\subseteq Z$ and $Y\subseteq Z$. Then $X\cup Y\subseteq Z$. Thus $X\cup Y$ is the least upper bound of X and Y, or $X\vee Y=X\cup Y$.

On the other hand, we have $X \cap Y \subseteq X$ and $X \cap Y \subseteq Y$, so $X \cap Y$ is a lower bound of X and Y. And for any other lower bound Z such that $Z \subseteq X$ and $Z \subseteq Y$, we have $Z \subseteq X \cap Y$. Thus $X \wedge Y = X \cap Y$.

(c) (5 points) Consider the poset of partial functions from \mathbb{N} to \mathbb{N} (denoted $\mathbb{N} \to_p \mathbb{N}$) under the extension ordering on partial functions (i.e. $f \leq g$ if $f \subseteq g$ as relations). Show that this poset is not a lattice.

Solution: Let $f = \{(0,0)\}$ (the partial function that maps 0 to 0 and is undefined for $x \neq 0$), and let $g = \{(0,1)\}$. Then there is no single valued function that extends both f and g, so f and g have no common upper bound, and hence $f \vee g$ is undefined. Therefore $\mathbb{N} \to_p \mathbb{N}$ is not a lattice under the subset (i.e. function extension) ordering.

For any lattice, the meet and join operations satisfy the following algebraic laws.

$$x \wedge y = y \wedge x \qquad x \vee y = y \vee x \qquad \text{(Commutative)}$$

$$x \wedge (y \wedge z) = (x \wedge y) \wedge z \qquad x \vee (y \vee z) = (x \vee (y \vee z) \qquad \text{(Associative)}$$

$$x \wedge (x \vee y) = x \qquad x \vee (x \wedge y) = x \qquad \text{(Absorption)}$$

(d) (15 points) Prove the first absorption law holds in any lattice.

Solution: Since $x \land (x \lor y)$ is the glb of x and $x \lor y$, it is in particular a lower bound of x, so $x \land (x \lor y) \le x$. Similarly, $x \le x \lor y$, and $x \le x$ by reflexivity, so x is a lower bound of $\{x, x \lor y\}$, and so x must be less than or equal to the glb of $\{x, x \lor y\}$, or $x \le \{x, x \lor y\}$. By antisymmetry, we have the desired equality.

Bonus (15 points). A structure $\langle L, \wedge, \vee \rangle$ consisting of a set L and two binary operations \wedge and \vee on L that satisfy the commutative, associative, and absorption laws given above can also be called a lattice. Show that for such a structure, an ordering \leq can be defined on L in terms of the meet and join operations such that meet is the glb and join is the lub.

Solution: We defined an ordering \leq on L by $x \leq y$ iff $x = x \wedge y$ (it will turn out that this is equivalent to defining $x \leq y$ when $x \vee y = y$). We need to show (a) that this is a partial ordering (i.e. it satisfies the reflexivity, antisymmetry, and transitivity laws), and (b) that under this ordering $x \wedge y$ is the glb of $\{x,y\}$ and $x \vee y$ is the lub of $\{x,y\}$.

(a). \leq is a partial order.

Reflexivity: $x = x \land (x \lor (x \land x))$ by the first absorption law, with y replaced by $(x \land x)$. Then by the second absorption law, the right hand argument $(x \lor (x \land x))$ is equal to x. Thus $x = x \land x$, and hence $x \le x$.

An operation like \wedge that satisfies the equation $x = x \wedge x$ is said to be *idempotent*. A similar proof shows that \vee is also an idempotent operation.

Antisymmetry: Assume $x \le y$ and $y \le x$. Then $x = x \land y$ and $y = y \land x$ by the definition of \le . But then it follows that x = y by the commutativity of \land .

Transitivity: Assume $x \le y$ (so $x = x \land y$) and $y \le z$ (so $y = y \land z$). Then we have

$$x = x \land y$$
 (since $x \le y$)
 $= x \land (y \land z)$ (since $y \le z$)
 $= (x \land y) \land z$ (associativity of \land)
 $= x \land z$ (since $x \le y$)

So we have x < z as required.

(b). $x \wedge y$ is glb of $\{x, y\}$.

We start by showing that $x \land y \le x$.

$$(x \land y) \land x = (x \land x) \land y$$
 (associativity and communitativity)
= $x \land y$ (idempotence of \land)

Hence $x \land y \le x$. Similarly we have $x \land y \le y$. So $x \land y$ is a lower bound. Suppose z is another lower bound, implying that $z = z \land x$ and $z = z \land y$. Then $z \land (x \land y) = (z \land x) \land y = z \land y = z$, so $z \le x \land y$. Hence $x \land y$ is the glb.

A "dual" proof shows that that $x \lor y$ is the lub of $\{x,y\}$, provided that we prove the following lemma.

Lemma: $x = x \land y \Leftrightarrow y = x \lor y$

Proof: $[\Rightarrow]$: Assume $x = x \land y$. Then $x \lor y = (x \land y) \lor y = y \lor (y \land x) = y$, the first equality following by commutativity, and the second by the second absorption law. Therefore $y = x \lor y$.

$$[\Leftarrow]$$
: Assume $y = x \lor y$. Then $x \land y = x \land (x \lor y) = x$, so $x = x \land y$.