
CS 153 Foundations of Software Homework Solution 4
Fall 2006 Due Oct 27, 2006

1. [5] Suppose 〈B,≤B〉 is a poset and f : A → B is a total function. Give two ways of a defining
partial order on the domain A such that f is monotonic, and say under what circumstances (if any)
these two definitions will coincide. [What I am looking for is the “natural” way of inducing an
ordering on A such that f is monotonic, and a “trivial” way of defining an order such that f is
monotonic.]

We can define a partial order on A in the following ways:

(a) We can define a partial order on A in terms of the partial order on B. B has a weak partial order,
in the standard way, we define a strict partial order on B, <B by excluding the identity relation on
B, denoted by IB: <B =≤B − IB. Then, we define a strict partial order on A by

a <A b iff f (a) <B f (b)

Now we have to show that 〈A,<A〉 is a partial order, i.e. that 〈A,<A〉 is irreflexive, transitive, and
asymmetric.

(i) Irreflexive

aNTS: ∀a ∈ A.a ≮A a

Proof: Let a ∈ A. Then f (a) ≮ f (a), which implies a ≮ a.

(ii) Transitive

By the definition of <A, a1 <A a2 and a2 <A a3 ⇒ f (a1) <B f (a2) and f (a2) <B f (a3). By transi-
tivity of <B this implies that f (a1) <B f (a3). Therefore, by definition of <A, a1 <A a3.

(iii) Asymmetric

Assume for contradiction, a1 <A a2 and a2 <A a1. Then by transitivity, a1 <A a1 which contradicts
the fact that <A is irreflexive.

By our definition, a1 <A a2 ⇒ f (a1) <B f (a2), so f is monotonic.

(b) Consider the identity relation on A: IA(a,b) ⇔ a = b

Since f is a function and thus single valued, IA(a,b)⇔ f (a) = f (b), and hence f (a)≤B f (b), so f
is monotonic with respect to IA. We just need to show that IA is a partial order. First note that the
identity relation on any set is certainly an equivalence relation (in fact the notion of an equivalence
relation generalizes the properties of the identity relation). So IA is reflexive and transitive (and
symmetric). To show that IA is also antisymmetric, assume that IA(a,b) and IA(b,a). Then a = b
simply by the definition of IA. Hence IA is a partial order.

2. Exercise 4.4.2 (b) (p. 267) [5]

Prove by induction that 5+7+9+11+ ...+(2n+3) = ∑
n
k=1(2k +3) = n2 +4n
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Proof by ordinary mathematical induction on n.

Base case: n=1

(2n+3) = 5 = n2 +4n

Inductive case: Consider 1 < n, so n = m+1 for some m.
Induction Hypothesis: Assume the statement holds for m, i.e. ∑

m
k=1(2k +3) = m2 +4m.

Then

n

∑
k=1

(2k +3) =
m

∑
k=1

(2k +3)+(2n+3)

= m2 +4m+(2n+3) (by IH)
= m2 +4m+(2(m+1)+3)
= m2 +4m+2m+2+3

= (m2 +2m+1)+4(m+1)
= (m+1)2 +4(m+1)
= n2 +4n

3. Exercise 4.4.8 (p. 268) [10]

Let A be a finite set, |A|= n. Show that |P(A)|= 2n.

Proof by ordinary mathematical induction on n.

Base case: n=0. Then A = /0, so P(A) = {{ /0}} and |P(A)|= 1 = 20

Inductive case: Assume n > 1,n = m+1 and |A|= n

Induction Hypothesis: For any set B, such that |B|= m, |P(B)|= 2M.

NTS: |P(A)|= 2n

Since n > 1 and |A| = n, we know that A is not empty. So let x be any element of A and define
B = A−{x}. Then |B|= n−1 = m, and by the induction hypothesis, |P(B)|= 2m.

Next we define a function f : P(B)→P(A) by f (X) = X ∪{x}. We claim that (a) f is injective,
(b) P(A) = P(B)∪ f (P(B)), and (c) P(B)∩ f (P(B)) = /0.

(a) Let X1,X2 ∈P(B) and assume that f (X1) = f (X2). Then X1∪{x}= X2∪{x} by the definition
of f . Since x is not a member of either X1 or X2, this implies that X1 = X2, so f must be injective.

(b) For any Y ∈ P(A), either x ∈ Y so that Y = f (Y −{x}) and hence y ∈ f (P(B)), or x /∈ Y , in
which case Y ∈ P(B). Thus any element of P(A) is in f (P(B)) or P(B), or P(A) = P(B)∪
f (P(B)).

(c) Suppose Z ∈P(B)∩ f (P(B)). Then Z ∈P(B), implying x /∈ Z, and Z ∈ f (P(B)), implying
Z = Y ∪{x} for some Y ∈P(B), which in turn implies x ∈ Z. Since this is impossible, we conclude
there is no such Z, and hence P(B)∩ f (P(B)) = /0.

Now property (a) implies that | f (P(B))| = |P(B)| = m, while (b) and (c) imply that |P(A)| =
| f (P(B))|+ |P(B)|. Thus |P(A)|= 2m = n.

4. Exercise 4.4.19 (b) (p. 270) [10]

Show: isMember(a,removeAll(b,L))=isMember(a,L), given a 6= b.
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First, we will introduce some notation. We will denote the empty list by the constant nil. Every
nonempty list can be written as L = cons(h,m), where h is the head of the list and M is the tail
of the list.

The proof is by induction on the length of L.

Base case: L = nil, so len(L) = 0. Then

isMember(a,L) = isMember(a,nil) = false and
removeAll(b,L) = removeAll(b,nil) = nil implying
isMember(a,removeAll(b,L)) = isMember(a,nil) = false

So isMember(a,removeAll(b,L)) = false = isMember(a,L).

Inductive case: L = cons(h,M), so len(L) > 0 and len(M) = len(M)−1.

Induction Hypothesis: Assume the proposition holds for all lists K such that len(K) < n. [Note:
Actually, we can prove this by structural induction, were we only assume the property holds for M,
the tail of L.]

Case 1: h = a, so L = cons(a,M).

isMember(a,L)
= isMember(a,cons(a,M))
= true

isMember(a,removeAll(b,L))
= isMember(a,removeAll(b,cons(a,M)))
= isMember(a,cons(a,removeAll(b,M))) since a 6= b
= true

So, isMember(a,removeAll(b,L)) = true = isMember(a,L).

Case 2: h = b, so L=cons(b,M).

isMember(a,L)
= isMember(a,cons(b,M))
= isMember(a,M) since a6=b

isMember(a,removeAll(b,L))
= isMember(a,removeAll(b,cons(b,M)))
= isMember(a,removeAll(b,M)))
= isMember(a,M) by the IH

So, isMember(a,removeAll(b,L)) = isMember(a,M) = isMember(a,L).

Case 3: L=cons(h,M) where h 6=b and h 6=a.

isMember(a,L)
= isMember(a,cons(h,M))
= isMember(a,M) since a6=h

isMember(a,removeAll(b,L))
= isMember(a,removeAll(b,cons(h,M)))
= isMember(a,cons(h,removeAll(b,M))) since b6=h
= isMember(a,removeAll(b,M)) since a 6=h
= isMember(a,M) by the IH

So, isMember(a,removeAll(b,L)) = isMember(a,M) = isMember(a,L).

4. [20] (Generalized product). Let I be a nonempty set, which we will call an index set. A family
of sets indexed by I, which we write as {Xi | i ∈ I} is just a function F : I →P(U), where the set
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U is some universe such that each Xi = F(i) ⊆U . For example, if 〈A,≤〉 is a poset, we can define
the family of initial segments of A by letting I = A and Xi = s(i), where s(i) = {x ∈ A | x < i}. Note
that Xi = /0 if i is minimal in A. [What can we use as the universe U in this example?]

Now assume that the elements in a family {Xi | i ∈ I} are all nonempty, i.e. Xi 6= /0 for each i ∈ I.
The generalized product of this family is the set

Πi∈I Xi = { f : I →∪i∈IXi | ∀i ∈ I. f (i) ∈ Xi}

Note that the function space A → B of total functions from A to B is the same as the generalized
product Πa∈A Xa where Xa = B for all a ∈ A.

(a). Let I = {0,1} and define the family {Xi | i ∈ I} by X0 = A and X1 = B. Define a function
g : A× B → Πi∈I Xi so that g is a bijection and fst(p) = (g(p))(0) and snd(p) = (g(p))(1) for
any p ∈ A×B. [Here fst and snd are the first and second projections on ordered pairs, such that
fst(a,b) = a and snd(a,b) = b.]

Solution:

We will define g as follows:

g(a,b) = fa,b : I →∪i∈IXi where fa,b(0) = a, fa,b(1) = b

(i) we can verify by inspection that all fa,b satisfy the condition that ∀i ∈ I, f (i) ∈ Xi.

(ii) g is injective:

Assume (a,b),(c,d) ∈ A×B and (a,b) 6= (c,d). Then either a 6= c, in which case f(a,b)(0) = a 6=
b = f(c,d)(0), or b 6= d, in which case f(a,b)(1) = b 6= d = f(c,d)(1). In either case, f(a,b) 6=
f(c,d).

(iii) g is surjective:

Let f ∈Πi∈I Xi. We claim that g( f (0), f (1)) = f .

Proof: Let a = f (0) ∈ X0 and b = f (1) ∈ X1, and let f ′ = g(a,b). Then f ′(0) = a = f (0) and
f ′(1) = b = f (1), so f ′ = f .

Therefore f is a bijection.

(iv) Furthermore, we see that the condition stated in the problem holds:

g(a,b)(0) = fa,b(0) = a = f st(a,b)

and

g(a,b)(1) = fa,b(1) = b = snd(a,b)

(b). Now assume that each Xi is a (nonempty) well-founded poset with ordering ≤i, and define the
pointwise ordering of Πi∈I Xi by

f ≤p g ⇔ ∀i ∈ I. f (i)≤i g(i)

Give two examples of such pointwise ordered families where the ordering is well-founded and non-
well-founded, respectively.

Example 1:
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We use the generalized product Πi∈I Xi from part (a), where I = {0,1} and X0 = A and X1 = B.
We assume A and B to have well-founded partial orders ≤0 and ≤1, respectively. Two functions
f , f ′ ∈Πi∈I Xi are ordered by f ≤ f ′⇔ f (0)≤0 f ′(0) and f (1)≤ 1 f ′(1).

In part (a) we saw that there is a bijection g between the cartesian product A×B and Πi∈I Xi. g is
also an order isomorphism if we consider A×B to be ordered by the weak pointwise ordering:

(a,b)≤ (c,d)⇔ a≤0 c ∧ b≤1 c

So if we can show that A×B is well-founded under this ordering, it will follow that Πi∈I Xi will be
well-founded under its corresponding ordering.

Now let C be a non-empty subset of A×B. Since A is well-founded, there is an a0 ∈ A which is a
minimal element of {a ∈ A |∃b.(a,b) ∈C} = fst(C). Let Y = {b ∈ B|(a0,b) ∈C}. Since B is also
well-founded, ∃b0 ∈ Y such that b0 is the minimal element of Y .

Claim: (a0,b0) is minimal in C.

Proof : Suppose that (x,y) < (a0,b0) for some (x,y) ∈ C. Then either x <0 a0, contradicting the
minimality of a0 in fst(C), or x = a0 and y <1 b0, contradicting the minimality of b0 in Y . Thus no
such (x,y) can exist, and (a0,b0) is minimal.

Therefore, it will follow by the fact that g preserves the orderings that f0 = g(a0,b0) is the minimal
element in g(C). Note that any Z ⊆ Πi∈I Xi will be equal to g(C) for some C ⊆ A×B, namely,
C = g−1(Z).

Example 2:

Now consider Xi = N and I = N. Here Πi∈N N is the same as the function space N→ N.

We define an infinite descending chain {gi}i∈N as follows:

Let g j(i) = 0 if i < j and g j(i) = 1 if i≥ j.

Then for every j,

g j(k) = g j+1(k) = 0 for k = 1, . . . , j−1

g j(k) = g j+1(k) = 1 for k ≥ j +1

but g j+1( j) = 0 < 1 = g j( j), so g j+1 < g j in the pointwise partial order.

Thus, there is an infinite descending chain and the pointwise order on this generalized product is
not well-founded.
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