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1. [5] Express the properties of a partial order relation R being antisymmetric and total in terms R
and its inverse R−1.
Solution: Assume R is a partial order on a set A, so R ⊆ A×A, and let I be the identity relation on
A.

antisymmetric: If R is antisymmetric, then ∀a,b ∈ A.(a,b) ∈ R ∧ (a,b) ∈ R−1 ⇒ a = b, which
implies R∩R−1 ⊆ I. Conversely, if R∩R−1 ⊆ I, then (a,b) ∈ R and (b,a) ∈ R imply that (a,b) ∈
R∩R−1, which implies that (a,b) ∈ I, or a = b, so R is antisymmetric. Thus R is antisymmetric iff
R∩R−1 ⊆ I.

total: If R is total, then for any a,b ∈ A, (a,b) ∈ R or (a,b) ∈ R−1. Therefore, R∪R−1 = A×A.
Conversely, if R∪ R−1 = A× A, then for any a,b ∈ A, (a,b) ∈ R or (a,b) ∈ R−1 (equivalently
(b,a) ∈ R), so R is total. Thus R is total iff R∪R−1 = A×A.

2. Exercise 4.3.14 (b,d,f,h) (p. 253) [20 points]
Solution:
(b) f is monotonic. If a,b ∈ N and a < b , f (a) = a2 < b2 = f (b)
(d) f is not monotonic. A counter example: 1 | 2, but f (1) = 5 - 7 = f (2). But 5 - 7.
(f) f is not monotonic. A counter example: 2 | 6, but f (2) = 2 - 1 = f (6).
(h) f is monotonic. Let A,B ∈ P(N) and A ⊂ B. Suppose k ∈ f (A). Then k | a for some a ∈ A.
Because A⊂ B, we also have a ∈ B, so k ∈ f (B). Therefore, f (A)⊂ f (B).

3. [10] Show that the composition of two monotonic functions between posets is a monotonic
function.
Solution:
Let 〈A,�A〉,〈B,�B〉, and 〈C,�C〉 be posets. Let f : A → B and g : B →C be monotonic functions.
Let x,y ∈ A with x �A y. Then f (x)�B f (y) because f is monotonic, and thus g( f (x))�C g( f (y))
because g is monotonic. Therefore, we have (g◦ f )(x) = g( f (x))�C g( f (y)) = (g◦ f )(y), i.e., g◦ f ,
the composition of f and g, is monotonic.

4. [5] Show that for any function f : A → B, the associated image function f : P(A)→P(B) and
the inverse image function f−1 : P(B) → P(A) are monotonic relative to the subset ordering on
P(A) and P(B).
Solution:
Let X1,X2 ∈P(A) and X1 ⊂ X2. For any y ∈ B, if y ∈ f (X1), there is an x ∈ X1 such that f (x) = y.
Because X1 ⊂ X2, x ∈ X2. Therefore, y = f (x) ∈ f (X2). So we have f (X1) ⊂ f (X2). Therefore,
f : P(A)→P(B) is monotonic.
Let Y1,Y2 ∈ P(B) and Y1 ⊂ Y2. For any x ∈ A, if x ∈ f−1(Y1), f (x) = y ∈ Y1. Because Y1 ⊂ Y2,
y ∈Y2. Therefore, x ∈ f−1(Y2). So we have f−1(Y1)⊂ f−1(Y2). Therefore, f−1 : P(B)→P(A) is
monotonic.



5. [15] Consider the set R of binary relations over a set A:

R = P(A×A)

and let these relations be ordered by subset, so we are considering the poset 〈R, ⊆〉. The closure
operations t, s, and r defined in Section 4.1 of the text are unary operations on R, e.g. t : R →R.
Show that all three of these operations are monotonic.
Solution:

Transtive closure is monotonic:
First, we prove two lemmas:

Lemma 1 [Monotonicity of relation composition]: Let R1,R2,R3,R4 ∈P(A×A) such that R1 ⊂ R3
and R2 ⊂ R4. Then we have (R1 ◦R2)⊂ (R3 ◦R4).
Proof: If a,c ∈ A and (a,c) ∈ R1 ◦ R2 , there is a b ∈ A such that (a,b) ∈ R1 and (b,c) ∈ R2.
Because R1 ⊂ R3 and R2 ⊂ R4, (a,b) ∈ R3 and (b,c) ∈ R4. Therefore, (a,c) ∈ R3 ◦R4. So we have
(R1 ◦R2)⊂ (R3 ◦R4).

Lemma 2: If R1 ⊂ R2, then Rk
1 ⊂ Rk

2 for all k ≥ 1.
Proof: By mathematical induction.
Case k = 1: This holds immediately, since Rk

1 = R1 ⊂ R2 = Rk
2.

Case k = n+1: Assume the induction hypothesis Rn
1 ⊂ Rn

2. Since Rk
1 = R1 ◦Rn

1 and Rk
2 = R2 ◦Rn

2, the
conclusion Rk

1 ⊂ Rk
2 follows from the hypothesis R1 ⊂ R2 and the induction hypothesis by Lemma

1.

Now it follows from Lemma 2 and basic properties of union that if R1 ⊂ R2, then t(R1) =
⋃

∞
i=1 Ri

1 ⊂⋃
∞
i=1 Ri

2 = t(R2). Therefore, transtive closure is monotonic.

Symmetric closure is monotonic:
Assume R1 ⊂ R2. Since s(Ri) = Ri∪R−1

i for i = 1,2, it suffices to show that R−1
1 ⊂ R−1

2 . Assume
(a,b) ∈ R−1

1 . Then (b,a) ∈ R1, and from the assumption R1 ⊂ R2 it follows that (b,a) ∈ R2. Hence
(a,b) ∈ R−1

2 , and it follows that R−1
1 ⊂ R−1

2 .

Reflexive closure is monotonic:
Since r(Ri) = R1∪ I for i = 1,2, R1 ⊂ R2 implies r(R1)⊂ r(R2) by the monotonicity of union.

6. [15] Consider the set of partitions of a set A, ordered by the refinement order: P1 � P2 iff
∀X ∈ P1.∃Y ∈ P2.X ⊆Y . Show that every set of partitions of A has a lub and a glb. [Hint: consider
the meaning of the lub and glb in terms of the equivalence relations associated with the partitions.]
Solution:
Let M = {Pi} be a set of partitions of A, and let MR = {Ri} be the set of associated equivalence
relations on A, i.e. Ri is the equivalence relation derived from Pi.

Lemma: If R1 and R2 are two equivalence relations of A, and P1 and P2 are the corresponding
partions, then P1 � P2 if and only if R1 ⊂ R2.
Proof: Assume that P1 � P2, and that (a,b) ∈ R1. Then a,b ∈ X for some X ∈ P1, namely X = [a]R1 .
Because P1 � P2, there is a Y ∈ P2 such that X ⊂ Y . So we have a,b ∈ Y and therefore (a,b) ∈ R2.
Therefore, R1 ⊂ R2.
Assume conversely that R1 ⊂ R2. Let X ∈ P1. Then X = [a]R1 for some a. Let Y = [a]R2 . Then for
any b ∈ X we have (a,b) ∈ R1 and hence (a,b) ∈ R2, and hence b ∈ [a]R2 , or b ∈ Y . Thus X ⊂ Y ,
and it follows that P1 � P2.
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For the problem:
The lub part:
Let R =

⋃
i Ri. Let Eu = tsr(R), the smallest equivalence relation containing R. (Actually, R will be

reflexive and symmetric, so we really only need to take the transitive closure.) Eu is an equivalence
relation and we claim that the partition Pu associated with Eu is the lub of M . It is an upper bound:
For any Ri ∈MR, Ri ⊂ Eu. Therefore, Pi � Pu.
It is the lub: If partition P′ is an upper bound of M and E ′ is the associated partition, then by the
Lemma, E ′ ⊃ Ri for all i. But Eu is the least equivalence relation containing all the relations Ri, so
Eu ⊂ E ′, and hence Pu � P′.

The glb part:
Let El =

⋂
i Ri. We know that the set of equivalence relations is closed under intersection, so El is

an equivalence relation. We claim that the partition Pl associated with El is the glb of M .
It is a lowerbound: For any Ri ∈MR, Ri ⊃ El . Therefore, the Pl � Pi. It is the glb: If P′ is a lower
bound of M , then by the Lemma, the associated equivalence relation E ′ is a lower bound for MR,
i.e. E ′ ⊂ Ri for all i. But then E ′ ⊂ El , so P′ � Pl . Hence Pl is the glb of M .

7. [10] Given a poset 〈A, ≤〉, a subset C ⊆ A is a co-chain if no two elements in C are comparable
(i.e. related by ≤).
(a) For the set P({a,b,c,d}) ordered by subset, give the largest maximal co-chain (a maximal co-
chain is a co-chain that is not a proper subset of a larger co-chain).
(b) Give an example of a poset with an infinite co-chain.
Solution:
(a)
The largest co-chain is the set of all two-element subsets, {{a,b},{a,c},{a,d},{b,c},{b,d},{c,d}},
which has 6 elements.
(b) Let 〈A,≤〉 be a poset where A = ω and ≤ be the identity relation I. Then A = {0,1,2,3, ...}
itself is an infinite co-chain. This ordering is called the discrete ordering, and is the smallest possible
ordering on A. Of course, any other infinite set with the discrete ordering would work.

8. [10] Show that if A is an infinite set, then P(A) is not well-founded.
Solution: If A is an infinite set, we may pick an infinite sequence of elements a1,a2, ...,ai, ... of
A. Let B0 = A and Bn = A−{a1,a2, ...,an}. Bi ∈P(A) and we have an infinite descending chain
B0 � B1 � B2 � .... Therefore, P(A) is not well-founded.

9. [10] A preorder is a relation R ⊆ A×A such that R is reflexive and transitive. It should be clear
that given any binary relation Q on A, the reflexive, transitive closure tr(Q) is a preorder. Show that
given any preorder R on A, there is an equivalence relation∼R on A such that R/∼R is a partial order
on A/∼R, where R/∼R = {([a], [b]) | R(a,b)}
Solution:
We define E =∼R as follows: For a,b ∈ A, E(a,b) if and only if R(a,b)∧R(b,a).

E is reflexive: For a ∈ A, we have R(a,a), therefore we have E(a,a).

E is symmetric: For a,b ∈ A, if we have E(a,b), we have R(a,b) and R(b,a). Therefore, we have
E(b,a).

E is transitive: For a,b,c ∈ A, if we have E(a,b) and E(b,c), we have R(a,b), R(b,a), R(b,c), and
R(c,b). Because R is transitive, we have R(a,c) and R(c,a). Therefore, we have E(a,c).
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Thus E is an equivalence relation.

Next we have to prove that R/E is a well-defined relation on the quotient set A/E and that R/E is a
partial order.

R/E is well-defined:
Let a,b,c,d ∈ A such that E(a,c) and E(b,d). We need to show that R(a,b) if and only if R(c,d). If
R(a,b), because R(c,a), R(b,d) (by the assumption and the definition of E), and R is transitive, we
have R(c,d). If R(c,d), because R(a,c), R(d,b) (by the assumption and the definition of E), and R
is transitive, we have R(a,b).

R/E is a partial order:
If a ∈ A, ([a], [a]) ∈ R/E because (a,a) ∈ R. Therefore, R/E is reflexive. If a,b,c ∈ A, ([a], [b]) ∈
R/E, and ([b], [c])∈ R/E, by definition, (a,b)∈ R and (b,c)∈ R. Because R is transitive, (a,c)∈ R.
So we have ([a], [c])∈ R/E. Therefore, R/E is transitive. If a,b∈ A, ([a], [b])∈ R/E, and ([b], [a])∈
R/E, by definition, (a,b) ∈ R and (b,a) ∈ R. By the definition of E, [a] = [b]. Therefore, R/E is
antisymmetric. Thus, R/E is a partial order.
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