CS 153 Foundations of Software Homework 8
Fall 2006 Due: Nov 29, 2006

1. [20] For the propositional calculus proof system given by the sequent-style natural deduction in-
ference rules (Handout 2, all the rules that don’t involve quantifiers), prove the following Soundness
Theorem by structural induction on proofs.

Theorem: 'FA =T EA.

2. [35] Define an SML datatype that represents natural deduction style proofs for the propositional
calculus using the same deduction system as in the previous question. You will build this on the
type for formulas (wffs) from wif-mod.sml, and you’ll also need a type representing judgements
('t~ A) where I is a set or list of wffs and A is a wff.

Do all values of your proof datatype represent correct proofs according to the inference rules? If
not, write a function

val check : proof -> bool

that checks whether a proof is correct.

Use this datatype of proofs to implement a simple theorem prover that is clever enough to construct
a proof of a simple formula like A — (A V B). Le., you will define a function

val prove : wff -> proof

Use the check function to verify the correctness of the proof produced, if necessary.

3. [5] We can enrich the pure lambda calculus a bit by adding integer constants and primitive
operations like + and —, allowing terms like Ax.x+ 2. The expressions of this enriched calculus are
defined by the following grammar:

ex=n|x|etey|ei—er|erer| Axe

where n ranges over integer constants and x ranges over a set of variables. The juxtaposition of
two expressions, ejey, denotes the application of a function (e;) to an argument (e;), and function
application associates to the left, so that ejepe3 is read as (ejez)es. In a lambda abstraction Ax.e,
the variable x is bound in its scope e. In this enriched calculus a value is either a lambda abstraction
or an integer constant.

Let e be the lambda term given below. What variables appear free in e, and what variables appear
bound? Mark bound variable uses with an underline, and free variables with an overline, and draw
a line connecting each use of a bound variable with the corresponding binding occurrence of that
variable. Note carefully the structure of the expression determined by the parentheses.

e=(Ag.g(f2) (Ay. Az Ax.z(Au.u+x)x (Af.fy))



4. [5] Perform the substitution specified by:
Ay.x(Ax.(xz)y) [Au.xy/z]

Make sure that you avoid free variable captures.

Note: A couple additional questions may be added later.



