CS 153 Fall 2006

Foundations of Software

Homework 3 Due: October 20, 2006

- 1. [5] Express the properties of a partial order relation R being antisymmetric and total in terms R and its inverse R^{-1} .
- 2. Exercise 4.3.14 (b,d,f,h) (p. 253) [20 points]
- 3. [10] Show that the composition of two monotonic functions between posets is a monotonic function.
- 4. [5] Show that for any function $f:A\to B$, the associated image function $f:\mathcal{P}(A)\to\mathcal{P}(B)$ and the inverse image function $f^{-1}:\mathcal{P}(B)\to\mathcal{P}(A)$ are monotonic relative the subset ordering on $\mathcal{P}(A)$ and $\mathcal{P}(B)$.
- 5. [15] Consider the set \mathcal{R} of binary relations over a set A:

$$\mathcal{R} = \mathcal{P}(A \times A)$$

and let these relations be ordered by subset, so we are considering the poset $\langle \mathcal{R}, \subseteq \rangle$. The closure operations t, s, and r defined in Section 4.1 of the text are unary operations on \mathcal{R} , e.g. $t: \mathcal{R} \to \mathcal{R}$. Show that all three of these operations are monotonic.

- 6. [15] Consider the set of partitions of a set A, ordered by the refinement order: $P_1 \leq P_2$ iff $\forall X \in P_1. \exists Y \in P2. X \subseteq Y$. Show that every set of partitions of A has a lub and a glb. [**Hint**: consider the meaning of the lub and glb in terms of the equivalence relations associated with the partitions.]
- 7. [10] Given a poset $\langle A, \leq \rangle$, a subset $C \subseteq A$ is a *co-chain* if no two elements in C are comparable (i.e. related by \leq .
- (a) For the set $\mathcal{P}(\{a,b,c,d\})$ ordered by subset, give the largest maximal co-chain (a maximal co-chain is a co-chain that is not a proper subset of a larger co-chain).
- (b) Give an example of a poset with an infinite co-chain.
- 8. [10] Show that if A is an infinite set, then $\mathcal{P}(A)$ is not well-founded.
- 9. [10] A preorder is a relation $R \subseteq A \times A$ such that R is reflexive and transitive. It should be clear that given any binary relation Q on A, the reflexive, transitive closure tr(Q) is a preorder. Show that given any preorder R on A, there is an equivalence relation \sim_R on A such that R/\sim_R is a partial order on A/\sim_R , where $R/\sim_R = \{([a], [b]) \mid R(a, b)\}$.