CS 153 Fall 2006

Foundations of Software

Homework 2 Due: October 11, 2006

- 1. Exercise 2.5.3(b,d) (p. 125) [5 points]
- 2. Exercise 2.5.6 (p. 125) [5]
- 3. Exercise 2.5.10 (p. 125) [10]
- 4. [10] Give a simple proof, using the Schröder-Bernstein Theorem, that $Nat \times Nat$ has the same cardinality as Nat (*i.e.* $Nat \times Nat \sim Nat$).
- 5. 4.1.2(b,d) (p. 210) [5]
- 6. 4.1.7(b) (p. 35) [5]
- 7. 4.1.13(b,d) (p. 211) [5]
- 8. 4.1.25(b) (p. 213) [5]
- 9. 4.2.4(b) (p. 230) [5]
- 10. 4.2.8 (p. 231) [10]
- 11. 4.2.13* (p. 231) [0]
- 12. [15] Let $R \subset A \times A$ be a binary relation on the set A. Consider the set of equivalence relations on A containing R:

$$\mathcal{E} = \{ E \subset A \times A \mid E \text{ is an equivalence reln on } A \ \land \ R \subset E \}$$

Show that \mathcal{E} is not empty, and that the intersection of \mathcal{E} is equal to tsr(R) (the transitive, symmetric, reflexive closure of R).

- 13. 4.3.7(b) (p. 252) [5]
- 14. 4.3.12 (p. 252) [5]
- 15. [10] Consider the relation of refinement on partitions of a set A as a partial order. Show that if A is infinite, the partial order of partitions is not well-founded.