```
Basic Math concepts, terminology, and notations
1. sets, relations, functions, orders
  (ref: Naive Set Theory by Halmos)
sets
  set notation
    listing elements: {1,3,2,5}, {}
    comprehension: \{x \text{ in } A \mid P(x)\}
      Russell's Paradox
  set membership
  set equality
  subset relation, proper subset
  singleton set
  disjoint sets
  operations:
    union, intersection, difference, symmetric difference, complement, powerset,
    cartesian product (assumes notion of pairs or tuples)
  Venn diagrams
  characteristic function of a (sub)set
  size of a set, cardinality
    finite sets, infinite sets
    countable sets (functions)
  families of sets (functions)
    unions, intersections of families
  some useful sets:
    empty set ($\empty$)
    1 = {()} (canonical one element set)
    2 = bool
    Nat (aka \omega)
  bags or multisets
relations
  a subset of a cartesian product
 operations:
    inverse
    composition (self composition, powers)
    image, inverse image
  properties (of binary relations)
    reflexive, irreflexive
    transitive
    symmetric
    anti-symmetric
  closures
    reflexive, transitive closures
functions
  a special form of binary relation between two sets
  functions are assumed partial by default
  application of a function
  graph of a function
  domain, co-domain, range
  partial, total functions
  injective (1-1), surjective (onto), bijective (1 to 1, onto) functions
  inverse function f^{-1} (same as inverse relation)
  composition of functions
  image, inverse image (inherited from relations)
  closure of a set under a function
  fixed point of a function
orders
  a special form of binary relation on a set
  preorder
  partial and total orders
  linear orders
```

```
well-founded order
  incomparable elements
  minimal and maximal elements
  least and greatest elements
  supremum (sup, lub), infimum (inf, glb) of a set of elements
  chains, co-chains
    limits of chains (complete partial orders (CPOs))
  pointwise extension of an order to functions
  ordinal numbers
  sorting sequences
  monotone and antimonotone functions on ordered sets
equivalence relations
  reflexive, transitive, antisymmetric
  equivalence class
  partitions
  congruence relations
lattices
  meet, join
  induced ordering (every lattice is an ordered set)
     (meet = binary inf, join = binary sup)
  eg: powerset as lattice
boolean algebras
  generalized and, or, not
  special form of lattice
simple structures
  tuples (elements of a cartesian product)
  sequences
    lists (nil, cons, hd, tl, ...) [sequential access]
    vectors (arrays - update) [random access]
    strings (vector of characters)
    heterogeneous and homogeneous
  sums (tagged disjoint unions)
  trees
  graphs
2. Basic Logic
propositional calculus
  logical connectives
    and, or, not, implies, equiv
  propositional variables
  models, truth assignments
  material implication
    contrapositive
  truth tables
  tautologies
 proofs
    axioms
    inference rules
predicate calculus
  propositional connectives + terms, relations, variables, quantifiers
  terms
  relations
  variables
  atomic formulae (literals)
  quantifiers - universal (all) and existential (exists)
  axioms and inference rules
  law of the excluded middle
    proof by contradiction
```

[resolution]

```
Other logics
intuitionistic logic
modal and temporal logic
higher-order logic
type theory
```

3. Computing models

```
lambda calculus: computing with functions
  syntax (concrete and abstract)
  pure and applied
  beta-reduction (function application)
    beta-redexes
  alpha-conversion (meaninglessness of names of bound variables)
  reduction sequences
  Church-Rosser property
  reduction strategies
    normal order
   call-by-name
    call-by-value
  recursion and the Y-combinator
  simply typed lambda calculus
    types
    typing rules
   well-typed expressions
first-order functional language (informal)
  function equations
  term rewriting systems
finite state machines
  regular expressions
```

4. Fixed point theory and induction

the Tarski-Knaster fixed point theorem

undecidability of the halting problem

semantics of inductive definitions inductive definitions as fixed points

anatomy of inductive proofs
 case analysis
 induction hypotheses

computability

Church's thesis