Algorithms — CS-27200/37000  Homework — January 26, 2005

Instructor: Laszlé Babai Ry-164 e-mail: laci@cs.uchicago.edu

NEW! The class now has a website,
http://www.classes.cs.uchicago.edu/current/27200-1

Please check it before you do the homework.

ADVICE. Take advantage of the TA sessions.

CHANGE IN SCHEDULE: TA sessions are held in Ryerson-255, Tuesday
and Thursday 5-6pm, Saturday 1lam-noon, and (this is new) Wednesday
after class 12:30-1:20 or 1:30-2:20 depending on demand. Indicate your
interest in the Wednesday session to the instructor immediately after class.
(The Wednesday evening sessions are discontinued.)

IMPORTANT. If you have not done so yet, please send e-mail to the instruc-
tor with your name, major, year, type of credit sought (letter grade, P/F,
etc.), list of proof-oriented math courses previously taken; include whether
or not you took CMSC-27100 (Discrete Math). In the subject write 27200
info or 37000 info, as appropriate.

HOMEWORK. Please print your name on each sheet. Print “U” next
to your name if you seek 27200 credit and “G” if you seek 37000 credit.
Undergraduates receive the stated number of points as bonus points for “G
only” problems. — Please try to make your solutions readable. Unless ex-
pressly stated otherwise, all solutions are due at the beginning of the next
class.

Homework is collected in three separate piles (U, G, “G only”).
Please put your solutions to “G only” problems on that pile, and your solu-
tions to other problems on the “U” or “G” pile according to the credit you
seek.

9.1 (U,G) (Due Monday, January 31) Let P and @ be statements and S a set of
instructions. Consider the loop “while P do S.” Recall that @ is a
loop-invariant for this loop if for all configurations X (all possible
settings of the variables) it is true that

if P& holds for the configuration X then () also holds for
the configuration S(X),

where S(X) is the configuration obtained from X by executing S.

Note that the highlighted statement has to hold even for infeasible
configurations X (i.e., for settings of the variables that could not oc-
cur in the course of the execution of the algorithm). The situation
has some similarity with chess puzzles: when showing that a certain
configuration leads to checkmate in two moves, you do not investigate
whether or not the given configuration could arise in an actual game.



9.2 (U,Q)

Dijkstra’s algorithm consists of iterations of a single “while” loop.
Consider the following two statements:

Q1: (Vu,v € V)(if u is black and v is not black then c(u) < ¢(v)).

Q2 : (Vv € V)(c(v) is the minimum cost among all s — ... — v paths
that pass through black vertices only).

(U,G) Prove that @ is a loop-invariant. Prove that Q1&Q2 is a loop-
invariant. (Do not hand in. Zero points.)

(G, 7 points) Prove that () alone is not a loop-invariant. FEzplana-
tion. You need to construct a weighted directed graph with nonnega-
tive weights, a source, and an assignments of all the variables (parent
pointers, status colors, current cost values) such that @2 holds for
your configuration, but Q2 will no longer hold after executing Dijk-
stra’s while loop. Your graph should have very few vertices (4 vertices

suffice).

(34343 points) (Due Monday, January 31) For each statement, decide
whether or not it is a loop-invariant for BFS: (a) “Vertex #2 is black.”
(b) “Vertex #2 is white.” (c) “Vertex #2 cannot change from black
to white.” Reason your answers!



