Algorithms — CS-27200/37000 Homework — January 24, 2005

Instructor: Laszlé Babai Ry-164 e-mail: laci@cs.uchicago.edu

ADVICE. Take advantage of the TA sessions.

CHANGE IN SCHEDULE: TA sessions are held in Ryerson-255, Tuesday
and Thursday 5-6pm, Saturday 1lam-noon, and (this is new) Wednesday
after class 12:30-1:20 or 1:30-2:20 depending on demand. Indicate your
interest in the Wednesday session to the instructor immediately after class.
(The Wednesday evening sessions are discontinued.)

IMPORTANT. If you have not done so yet, please send e-mail to the instruc-
tor with your name, major, year, type of credit sought (letter grade, P/F,
etc.), list of proof-oriented math courses previously taken; include whether
or not you took CMSC-27100 (Discrete Math). In the subject write 27200
info or 37000 info, as appropriate.

HOMEWORK. Please print your name on each sheet. Print “U” next
to your name if you seek 27200 credit and “G” if you seek 37000 credit.
Undergraduates receive the stated number of points as bonus points for “G
only” problems. — Please try to make your solutions readable. Unless ex-
pressly stated otherwise, all solutions are due at the beginning of the next
class.

Homework is collected in three separate piles (U, G, “G only”).
Please put your solutions to “G only” problems on that pile, and your solu-
tions to other problems on the “U” or “G” pile according to the credit you
seek.

READING. Graduate students: study Depth-First Search and its applica-
tions.

8.1 (U,G) (5 points) Given an undirected graph G by an array of adjacency lists,
determine the degree of each vertex and sort the vertices by degree in
linear time. Write a very simple pseudocode.

8.2 (U,G) (6 points) Recall that a digraph is strongly connected if every vertex is
accessible from every vertex. Given a digraph G = (V, E) by an array
of adjacency lists, decide in linear time whether or not G is strongly
connected. Your solution should be very simple, only 3 essential lines
based on facts discussed in class or previously assigned as homework.

8.3 (U,G) (Due Friday, January 28) Let A and B be sets of integers. We define
theset A+ Bas A+ B={a+b: ac Abe B}. For instance, if
A=1{2,3,57} and B = {1,3,4} then A+ B = {3,4,6,7,8,9,10, 11}.
(Note that 6 € A+ B for three reasons: 6 =1+5=3+3=4+2.)
The incidence vector of a set A C {1,2,...,n} is the (0, 1)-vector
va = (x1,...,2y) where z; = 1ifi € Aand x; =0if i € A.

Let the sets A, B C {1,2,...,n} be given by their incidence vectors
(treated as arrays). Compute the incidence vector of the set A+ B C
{1,2,...,2n}. (This problem arose in machine vision.)

(a) (3 points) Write a simple pseudocode to do the computation in
O(n?) steps. (Arithmetic with and copying numbers between 1
and 2n counts as a step.)

(b) (G only, 8 points) Solve the problem in O(n®) steps where a@ =
log3 ~ 1.58. Describe your solution in English. Your solution
should not be more than a short paragraph (with reference to a
result proved in class).

(¢) (G only, 0 points, do not hand in) Modify the solution to (b) so
it will work in O(n(logn)?) using Fast Fourier Transform (FFT).
(Read about FFT.)

(d) (Open problem - possible research project) Solve the problem in
O(n). (To the instructor’s knowledge, this is not known.)

8.4 (U,G) (Due Monday, February 7) Let G = (V,E) be an undirected graph.
Assume every vertex of G has degree < 45. (The degree of a vertex is
the number of its neighbors.) We wish to color the vertices red and
blue (each vertex gets exactly one color) such that each vertex will
have at most 22 neighbors of its own color. (Note that this is not a
legal coloring in the sense of the definition of the chromatic number.)
Show that this is always possible, using the following algorithm (given
here in pseudocode).

procedure Lovdsz-toggle

1 Initialize by coloring each vertex arbitrarily

2 Call a vertex “bad” if it has more than 22 neighbors of its own color
3 BAD := set of bad vertices

4 while BAD # ()

) pick a bad vertex

6 recolor it

7 update BAD

8 end(while)

(a) (8 points) Prove that this algorithm will terminate in a finite
number of steps. (Give a very simple and convincing argument,
no more than 5 or 6 lines.) Give an upper bound on the num-
ber of cycles of the while loop in terms of the basic parameters
|V|,|E|. Hint. Call the graph with a coloring a “configuration.”
With each configuration, associate an integer (the “potential”)
in such a way that each round of the Lovész-toggle reduces the
potential. This will give a bound on the number of rounds. Note
that “the number of bad vertices” is NOT an appropriate poten-
tial function: it can increase.

(b) Show that statement (a) becomes false if 45 is increased to 46 (but
the number 22 remains unchanged). Construct graphs where each
vertex has degree < 46 and where

(i) (2 points) the algorithm never terminates, regardless of the
initial coloring and the choice of bad vertex made in line 5;

(ii) (3 points) for some initial colorings and some choices of the
bad vertex the algorithm will terminate, for others it will not.

(¢) (Grad only; 5 points) Modify the above algorithm to achieve the
following objective: each red vertex must have at most 25 red
neighbors and each blue vertex must have at most 19 blue neigh-
bors. Prove statements (a) and (b) above for the modified algo-
rithm.

8.5 (Due Monday, February 14) CAR RACE PROBLEM. The solution
should be short, elegant, and convincing.

Let R be a subset of the (n + 1)? points in the plane with integer
coordinates between 0 and n. We call R the “race track.” One of the
points of R is designated as the start (5), another as the goal (G).

The points are represented as vectors (i,j). Cars are particles sitting
on a point at any time. In one unit of time, a car can move from
a point of R to another point of R, say from (i1, 1) to (i2,j2). The
speed vector of the car during this time unit is defined as the vector
(i2 — i1, j2 — j1).

The acceleration/deceleration of the car is limited by the following
constraint: from any one time unit to the next one, each coordinate
of the speed vector can change by at most one.

For instance, if during time unit 6 the car was moving from point
(10,13) to point (16,12) then its speed vector was (6, —1) during this
move; during the next time unit, the following are its possible speed
vectors and corresponding destinations:

speed during destination at the end of

time unit 7 time unit 7
(7,0) (23,12)
(7,-1) (23,11)
(7,-2) (23,10)
(6,0) (22,12)
(6,—1) (22,11)
(6,—2) (22,10)
(5,0) (21,12)
(5,—1) (21,11)
(5,—2) (21,10)

Of course only those locations are legal which belong to R (the car
cannot leave the race track).

During time unit 0, the car rests at Start with speed (0,0). The
objective is to decide whether or not the Goal is reachable at all and
if so, to reach it using the minimum number of time units.

(a)

(15 points) Solve this problem in O(|R| - n?) time. Describe your
solution in clear English statements. Pseudocode not required.
Algorithms discussed and analysed in class can be used as subrou-
tines. Prove that your algorithm runs within the time claimed.
Hint. Use BFS. The difficulty is in constructing the right graph
to which to apply BFS. Do not overlook the fact that an optimal
route of the car may visit the same location several times (at dif-
ferent speeds). (Construct an example where the optimal route
visits the same point 100 times. Do not hand in the answer to
this parenthetical, though enlightening, question.)

(G only, 10 points) Solve the problem in O(|R|-n) time and space.
(Note that you are not permitted to use an array with more than
O(|R|-n) cells because of the space constraint.) (Hint: it is likely
that you need only a minor modification of the algorithm you
gave for (a) together with a more clever analysis.)

