Algorithms — CS-27200/37000 Homework — January 17, 2005

Instructor: Laszlé Babai Ry-164 e-mail: laci@cs.uchicago.edu

IMPORTANT. If you have not done so yet, please send e-mail to the instruc-
tor with your name, major, year, type of credit sought (letter grade, P/F,
etc.), list of proof-oriented math courses previously taken; include whether
or not you took CMSC-27100 (Discrete Math). In the subject write 27200
info or 37000 info, as approrpiate.

HOMEWORK. Please print your name on each sheet. Print “U” next
to your name if you seek 27200 credit and “G” if you seek 37000 credit.
Undergraduates receive the stated number of points as bonus points for “G
only” problems. — Please try to make your solutions readable. Unless ex-
pressly stated otherwise, all solutions are due at the beginning of the next
class.

Homework is collected in three separate piles (U, G, “G only”).
Please put your solutions to “G only” problems on that pile, and your solu-
tions to other problems on the “U” or “G” pile according to the credit you
seek.

5.1 (U,G) (8 points) (k-way merging.) Give an O(nlogk)-time algorithm to
merge k sorted lists into one sorted list, where n is the total num-
ber of elements in all the input lists. Hint. Use a heap for k-way
merging.

52 (U, G) 1. (5 points) Write pseudocode to turn the edge-list representation
of the digraph G = (V, F) into an adjacency list representation in
linear time. (“Linear time” means O(|V| + |E|) steps. Copying
an integer between 1 and |V| counts as one step.)

2. (5 points) Write pseudocode to turn an adjacency list represen-
tation of the digraph G = (V, E) into a monotone increasing ad-
jacency list representation in linear time, i.e., the out-neighbors
of each vertex must be listed in increasing order.

3. (5 points) Write pseudocode to turn an adjacency list represen-
tation of the digraph G = (V, ') into an adjacency list represen-
tation of the reverse digraph (we reverse each arrow) in linear
time.

4. (G only, 5 points) Describe an algorithm to decide, in linear time,
whether or not a digraph is undirected (the reverse of every edge
is an edge). The digraph is given in adjacency list representation.
Your solution should be very simple.

