
Algorithms – CS-27200/37000 Homework – January 14, 2005
Instructor: László Babai Ry-164 e-mail: laci@cs.uchicago.edu

IMPORTANT. If you have not done so yet, please send e-mail to the instruc-
tor with your name, major, year, type of credit sought (letter grade, P/F,
etc.), list of proof-oriented math courses previously taken; include whether
or not you took CMSC-27100 (Discrete Math). In the subject write 27200
info or 37000 info, as approrpiate.

HOMEWORK. Please print your name on each sheet. Print “U” next
to your name if you seek 27200 credit and “G” if you seek 37000 credit.
Undergraduates receive the stated number of points as bonus points for “G
only” problems. – Please try to make your solutions readable. Unless ex-
pressly stated otherwise, all solutions are due at the beginning of the next
class.

Homework is collected in three separate piles (U, G, “G only”).
Please put your solutions to “G only” problems on that pile, and your solu-
tions to other problems on the “U” or “G” pile according to the credit you
seek.

4.1 (U, G) (6 points) Let H be a heap and x the address of a node in H. Let
us change the value key(x) to newkey(x) and suppose newkey(x) <
key(x). Write a PSEUDOCODE to restore the heap structure. Esti-
mate the number of comparisons made in the process. Your estimate
should be a function of n, the number of items in the heap (which is the
number of nodes of the heap). Your estimate should be asymptotically
best possible (with the correct constant).

4.2 (G only) (10 points) Suppose we are given n data (reals) arranged in a heap.
Prove: sorting the data still requires asymptotically n log n compar-
isons. (The meaning is that “preprocessing” the data by arranging
them in a heap does not significantly reduce the cost of sorting.)
WARNING: this problem is NOT about the HEAPSORT algorithm.
We are allowed to pick any two items, compare them, record the re-
sult, and choose our next step as a function of the result. The method
does not need to have anything to do with the heap structure. Your
lower bound must be valid for all conceivable algorithms.

1


