Loris Reference Manual
1.3

Generated by Doxygen 1.3.4

Thu Apr 7 22:49:00 2005

Contents

1 Loris Hierarchical Index 1
1.1 LorisClassHierarchy 1

2 Loris Class Index 3
2.1 LorisClassList. 3

3 Loris Class Documentation 5
3.1 Loris:AiffFile Class Reference. 5
3.2 Loris::PartialUtils::AmplitudeScaler Class Refezen. 12
3.3 Loris::Analyzer Class Reference. 13
3.4 Loris::AssertionFailure Class Reference 24
3.5 Loris::PartialUtils::BandwidthScaler Class Referen 25
3.6 Loris::Breakpoint Class Reference. 26
3.7 Loris::BreakpointEnvelope Class Reference 30
3.8 Loris::Channelizer Class Reference. 33
3.9 Loris::PartialUtils::Cropper Class Reference 37
3.10 Loris::Dilator Class Reference 38
3.11 Loris::Distiller Class Reference. 44
3.12 Loris::Exception Class Reference 47
3.13 Loris::FilelOException Class Reference. 50
3.14 Loris::FourierTransform Class Reference. 51
3.15 Loris::IndexOutOfBounds Class Reference. 56
3.16 Loris:InvalidArgument Class Reference 57

CONTENTS

3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27

Loris:
Loris:
Loris:
Loris:
Loris:
Loris:
Loris:
Loris:
Loris:
Loris:

Loris:

:Invalidlterator Class Reference. 58
:InvalidObject Class Reference 60
:InvalidPartial Class Reference 62
:Morpher Class Reference. 64
:Partial Class Reference 75
:Partial_Constlterator Class Reference. 89

:Partial_Iterator Class Reference 94
:PartialUtils::PartialMutator Class Refecen. 99

:Resampler Class Reference. 101
‘RuntimeError Class Reference 104
:Sieve Class Reference. 105

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

Chapter 1

Loris Hierarchical Index

1.1 Loris Class Hierarchy

This inheritance list is sorted roughly, but not completalphabetically:

Loris:AiffFile 5
Loris::Analyzer 13
Loris::Breakpoint 26
Loris::BreakpointEnvelope 30
Loris::Channelizer. 33
Loris::PartialUtils::Cropper e 37
Loris::Dilator 38
Loris::Distiller AL
Lorisi:Exception. 47
Loris::AssertionFailure oo 24
Loris::IndexOutOfBounds, 56
Loris::InvalidArgument 57
Loris::InvalidObject 60
Loris::Invaliditerator, 58
Loris::invalidPartial, 62
Loris::RuntimeError. 104
Loris::FilelOException 50
Loris::FourierTransform, 51
Loris::Morpher 64
Loris::Partial 75
Loris::Partial Constlterator 89
Loris::Partial_Iterator 94
Loris::PartialUtils::PartialMutator 99
Loris::PartialUtils::AmplitudeScaler 12

Loris::PartialUtils::BandwidthScaler 25

Loris Hierarchical Index

Lorisi:Resampler 101
LorisiSieve o o 105

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

Chapter 2

Lori

s Class Index

2.1 Loris Class List

Here are

Loris::

Loris::

Loris::

Loris::

Loris::

Loris::

Loris::

Loris::

Loris::

the classes, structs, unions and interfaces vighdascriptions:

AiffFile (ClassAiffFile represents sample data in a AIFF-format sam-
ples file, and manages file /0 and sample conversion) 5.
PartialUtils::AmplitudeScale(Scale the amplitude of the specified
Partialaccording to an envelope representing a time-varying am-
plitudescalevalue), 12
Analyzer(ClassAnalyzerrepresents a configuration of parameters for
performing Reassigned Bandwidth-Enhanced Additive Asialgf
sampledsounds) 13
AssertionFailuréClass of exceptions thrown when an assertion (usu-
ally representing an invariant condition, and usually dieté by the
Assert macro)isviolated) 24
PartialUtils::BandwidthScalgiScale the bandwidth of the specified
Partialaccording to an envelope representing a time-varying band-
widthscalevalue) 25
Breakpoint(ClassBreakpointrepresents a single breakpoint in the
Partialparameter (frequency, amplitude, bandwidth) envelope) . 26
BreakpointEnvelopéA BreakpointEnvelopeepresents a linear seg-
ment breakpoint function with infinite extension at each éhdt
is, evalutaing the envelope past either end of the breakfuric-

tion yields the value at the nearestend point)) 30
Channelize(ClassChannelizerepresents an algorithm for automatic
labeling of a sequence of Partials) 33

PartialUtils::CroppefTrim a Partialby removing Breakpoints outside
aspecifiedtimespan). oL 37

Loris Class Index

Loris::

Loris::

Loris::

Loris::

Loris:

Loris::

Loris::

Loris::

Loris::

Loris:

Loris::

Loris::

Loris::

Loris:

Loris::

Loris::

Loris::

Loris::

Dilator (ClassDilator represents an algorithm for non-uniformly ex-
panding and contracting tHeartialparameter envelopes according
to the initial and target (desired) times of temporal feasyr 38

Distiller (Class Distiller represents an algorithm for "distilling" a
group of Partials that logically represent a single compbirgo

asinglePartial) 44
Exception[Exceptionis a generic exception class for reporting excep-
tional circumstancesinlLoris) 47
FilelOExceptior{Class of exceptions thrown when file input or output
fails) 50
:FourierTransforn{FourierTransfornprovides a simplified interface
to the FFTW library (www.fftw.org)) 51
IndexOutOfBound§Class of exceptions thrown when a subscriptable
object is accessed with an index thatis outofrange)56
InvalidArgument(Class of exceptions thrown when a function argu-
mentis foundtobeinvalid) 57
Invaliditerator(Class of exceptions thrown when an Iterator is found
to be badly configured or otherwiseinvalid) 58
InvalidObject(Class of exceptions thrown when an object is found to
be badly configured or otherwiseinvalid) 60

:InvalidPartial(Class of exceptions thrown wherPartialis found to

be badly configured or otherwiseinvalid) 62
Morpher(ClassMorpherperforms sound morphing afrtialparam-

eter envelope interpolation according to a trio of freqyeampli-

tude, and bandwidth morphing functions, described by Erpes

) 64
Partial(An instance of clasPartialrepresents a single component in

the reassigned bandwidth-enhanced additive model)75
Partial_ConstlteratdiConst iterator for thé.oris::Partial Breakpoint

MAaP) . . o e 89

:Partial_Iterato(Non-const iterator for théoris::Partial Breakpoint

MAaP) . . o e 94
PartialUtils::PartialMutatofPartialMutatoris an abstract base class
for Partialmutators, functors that operate on Partials according to a
time-varyingenvelope) Q9
ResamplefClassResamplerepresents an algorithm for resampling
Partialenvelopes at regular timeintervals) 101
RuntimeErrofClass of exceptions thrown when an unanticipated run-
timeerrorisencountered) 104
Sieve(ClassSieverepresents an algorithm for identifying channelized
(seeChannelizex Partials that overlap in time, and selecting the
longer one to representthe channel) 105

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

Chapter 3

Loris Class Documentation

3.1 Loris::AlffFile Class Reference

ClassAiffFile represents sample data in a AIFF-format samples file, andgesTile
I/0 and sample conversion.

#include <A ffFile. h>

Public Types

* typedef std::vecter double> samples_type
The type of the sample storage in AiffFile.

» typedef samples_type::size_tygiee type

The type of all size parameters faiffFile.

 typedef std::vecter Marker> markers_type
The type of AIFF marker storage in aiffFile.

Public Member Functions

« AiffFile (const std::string &filename)

Initialize an instance ofiffFile by importing sample data from the file having the
specified filename or path.

Loris Class Documentation

templatectypename Iter AiffFile (Iter begin_patrtials, Iter end_patrtials, double
samplerate, double fadeTime=.001)

Initialize an instance oAiffFile with samples rendered from a sequnence of Partials.

AiffFile (double sampleratsjze typenumFrames=0)

Initialize an instance oAiffFile having the specified sample rate, preallocating num-
Frames samples, initialized to zero.

AiffFile (const double:buffer,size_typebufferlength, double samplerate)

Initialize an instance oAiffFile from a buffer of sample data, with the specified sample
rate.

AiffFile (const std::vecter double> &vec, double samplerate)

Initialize an instance oAiffFile from a vector of sample data, with the specified sam-
ple rate.

AiffFile (constAiffFile &other)

Initialize this andAiffFile that is an exact copy, having all the same sample data, as
anotherAiffFile.

AiffFile & operatorHconstAiffFile &rhs)

Assignment operator: change thigfFile to be an exact copy of the specifiifFile,
rhs, that is, having the same sample data.

markers_typ& markerg(void)
Return a reference to the Marker (skkarker.h) container for thisAiffFile.

constmarkers_typ& markergvoid) const

Return a const reference to the Marker (8éarker.h) container for thisAiffFile.

doublemidiNoteNumbei(void) const
Return the fractional MIDI note number assigned to thigFile.

size_type numFramésoid) const
Return the number of sample frames represented inAlifiiEile.

doublesampleRatgvoid) const

Return the sampling freqency in Hz for the sample data inAffiile.

samples_typ& samplegvoid)

Return a reference (or const reference) to the vector cairtgithe floating-point
sample data for thig\iffFile.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.1 Loris::AiffFile Class Reference 7

» constsamples_typ& samplegvoid) const

Return a const reference (or const reference) to the veaintaining the floating-
point sample data for thigiffFile.

» void addPartia(constLoris::Partial&p, double fadeTime=.001)

Render the specifieBartial using the (optionally) specifieBartial fade time, and
accumulate the resulting samples into the sample vectdhfs/AiffFile.

 templatectypename lter void addPartialglter begin_partials, Iter end_patrtials,
double fadeTime=.001)

Accumulate samples rendered from a sequence of Partials.

« void setMidiNoteNumbe(double nn)
Set the fractional MIDI note number assigned to thigFile.

« void write (const std::string &filename, unsigned int bps=16)

Export the sample data represented by thiffFile to the file having the specified
filename or path.

3.1.1 Detailed Description

ClassAiffFile represents sample data in a AIFF-format samples file, andgesTile
I/0 and sample conversion.

Since the sound analysis and synthesis algorithms in Lari the reassigned
bandwidth-enhanced representation are monawiffi-ile manages only monaural
(single channel) AlFF-format samples files.

3.1.2 Constructor & Destructor Documentation

3.1.2.1 Loris::AiffFile::AiffFile (const std::string & filename [explicit]

Initialize an instance oAiffFile by importing sample data from the file having the
specified filename or path.

Parameters:
filename is the name or path of an AIFF samples file

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

8 Loris Class Documentation

3.1.2.2 templatectypename lter> Loris::AiffFile::AiffFile (Iter begin_partials
Iter end_partials double samplerate double fadeTime=.001)

Initialize an instance aAiffFile with samples rendered from a sequnence of Partials.

The Partials in the specified half-open (STL-style) rangerandered at the specified
sample rate, using the (optionally) speciffeartialfade time (se&ynthesizer.fior an
examplanation of fade time).

Parameters:
begin_patrtialsis the beginning of a sequence of Partials

end_partialsis (one-past) the end of a sequence of Partials
samplerateis the rate at which Partials are rendered

fadeTime is thePartialfade time for rendering the Partials on the specified range.
If unspecified, the default fade time is 1 ms.

If compiled with NO_TEMPLATE_MEMBERS defined, this membercapts only
PartialList::const_iterator arguments.

3.1.2.3 Loris::AiffFile::AiffFile (double sampleratesize typenumFrames= 0)
[explicit]

Initialize an instance oAiffFile having the specified sample rate, preallocating num-
Frames samples, initialized to zero.

Parameters:
samplerateis the rate at which Partials are rendered

numFrames is the initial number of (zero) samples. If unspecified, nmgkes
are preallocated.

3.1.2.4 Loris::AiffFile::AiffFile (const double * buffer, size_typebufferlength,
double sampleratg

Initialize an instance oAiffFile from a buffer of sample data, with the specified sample
rate.

Parameters:
buffer is a pointer to a buffer of floating point samples.

bufferlength is the number of samples in the buffer.
samplerateis the sample rate of the samples in the buffer.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.1 Loris::AiffFile Class Reference 9

3.1.2.5 Loris::AiffFile::AiffFile (const std::vector < double > & veg double
sampleratg

Initialize an instance dAiffFile from a vector of sample data, with the specified sample
rate.

Parameters:
vec is a vector of floating point samples.

samplerateis the sample rate of the samples in the vector.

3.1.2.6 Loris::AiffFile::AiffFile (const AiffFile & other)

Initialize this andAiffFile that is an exact copy, having all the same sample data, as
anotherAiffFile .

Parameters:
other is theAiffFile to copy

3.1.3 Member Function Documentation

3.1.3.1 void Loris::AiffFile::addPartial (const Loris::Partial & p, double
fadeTime=.001)

Render the specifiedartialusing the (optionally) specifiedartialfade time, and ac-
cumulate the resulting samples into the sample vector fetffFile .

Parameters:
p is the partial to render into thisiffFile

fadeTime is thePartialfade time for rendering the Partials on the specified range.
If unspecified, the default fade time is 1 ms.

3.1.3.2 templatectypename Iter> void Loris::AiffFile::addPartials (Iter
begin_partials Iter end_partials doublefadeTime= .001)

Accumulate samples rendered from a sequence of Partials.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

10 Loris Class Documentation

The Partials in the specified half-open (STL-style) rangerandered at this AiffFile’s
sample rate, using the (optionally) speciffeattialfade time (se&ynthesizer.fior an
examplanation of fade time).

Parameters:
begin_partialsis the beginning of a sequence of Partials

end_patrtialsis (one-past) the end of a sequence of Partials

fadeTime is thePartialfade time for rendering the Partials on the specified range.
If unspecified, the default fade time is 1 ms.

If compiled with NO_TEMPLATE_MEMBERS defined, this membearcapts only
PartialList::const_iterator arguments.

3.1.3.3 double Loris::AiffFile::midiNoteNumber (void) const

Return the fractional MIDI note number assigned to thifé~ile .

If the sound has no definable pitch, note number 60.0 is used.

3.1.3.4 size_typeloris::AiffFile::numFrames (void) const

Return the number of sample frames represented irAfiffiSile .

A sample frame contains one sample per channel for a singhlsainterval (e.g.
mono and stereo samples files having a sample rate of 4410®tHzhlave 44100
sample frames per second of audio samples).

3.1.3.5 AiffFile & Loris::AiffFile::operator= (const AiffFile & rhs)

Assignment operator: change thisfFile to be an exact copy of the specifiadfFile,
rhs, that is, having the same sample data.

Parameters:
rhs is theAiffFile to replicate

3.1.3.6 void Loris::AiffFile::setMidiNoteNumber (doubl e nn)

Set the fractional MIDI note number assigned to thif§File .

If the sound has no definable pitch, use note number 60.0 éfaeilt).

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.1 Loris::AiffFile Class Reference 11

Parameters:
nn is a fractional MIDI note number, 60 is middle C.

3.1.3.7 void Loris::AiffFile::write (const std::string & filename unsigned int
bps=16)

Export the sample data represented by thiFile to the file having the specified
filename or path.
Export signed integer samples of the specified size, in Bjts§, 24, or 32).

Parameters:
filename is the name or path of the AIFF samples file to be created omaitezn.

bps is the number of bits per sample to store in the samples filtg& 4, or 32).If
unspeicified, 16 bits

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

12 Loris Class Documentation

3.2 Loris::PartialUtils::AmplitudeScaler Class Refer-
ence

Scale the amplitude of the specifi®artial according to an envelope representing a
time-varying amplitude scale value.

#include <Partial Utils.h>
Inheritance diagram for Loris::PartialUtils::Amplituliealer::

| Loris::PartiaIUtiIs::PartiaIMutator|

T

| Loris::PartiaIUtiIs::AmplitudeScaIe|r

Public Member Functions

» AmplitudeScalefdouble x)
Construct a newAmplitudeScalefrom a constant scale factor.

» AmplitudeScalefconst Envelope &e)

Construct a nevAmplitudeScalefrom an Envelope representing a time-varying scale
factor.

* void operator()Partial&p) const
Function call operator: apply a scale factor to the specifiéttial.

3.2.1 Detailed Description

Scale the amplitude of the specifi€@rtialaccording to an envelope representing a
time-varying amplitude scale value.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.3 Loris::Analyzer Class Reference 13

3.3 Loris::Analyzer Class Reference

ClassAnalyzerrepresents a configuration of parameters for performingstgaed
Bandwidth-Enhanced Additive Analysis of sampled sounds.

#i ncl ude <Analyzer. h>

Public Member Functions

» Analyzer(double resolutionHz)

Construct a newAnalyzerconfigured with the given frequency resolution (minimum
instantaneous frequency difference between Partials).

Analyzer(double resolutionHz, double windowWidthHz)

Construct a newAnalyzerconfigured with the given frequency resolution (minimum
instantaneous frequency difference between Partials) amalysis window width
(main lobe, zero-to-zero).

» Analyzer(constAnalyzer&other)

Construct a newAnalyzer having identical parameter configuration to another
Analyzer

e ~Analyzer(void)
Destroy thisAnalyzer

Analyzer& operator5constAnalyzer&rhs)

Construct a newAnalyzer having identical parameter configuration to another
Analyzer

void configure(double resolutionHz, double windowWidthHz)

Configure thisAnalyzerwith the given frequency resolution (minimum instantaseou
frequency difference between Partials) and analysis windadth (main lobe, zero-
to-zero, in Hz).

void analyze(const std::vector double> &vec, double srate)

Analyze a vector of (mono) samples at the given sample ratdz) and append the
extracted Partials to Analyzer’s PartialList (std::list Bartials).

void analyze(const doublebufBegin, const doublebufEnd, double srate)

Analyze a range of (mono) samples at the given sample ratdzjrand collect the
resulting Partials.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

14 Loris Class Documentation

« void analyze(const std::vectotr double> &vec, double srate, const Envelope
&reference)

Analyze a vector of (mono) samples at the given sample ratd2) and append the
extracted Partials to Analyzer’s PartialList (std::list Bartials).

void analyzgconst double-bufBegin, const doublebufEnd, double srate, const
Envelope &reference)

Analyze a range of (mono) samples at the given sample ratézjirmand append the
extracted Partials to Analyzer's PartialList (std::list Bartials).

 doubleampFloor(void) const

Return the amplitude floor (lowest detected spectral annhdi}, in (negative) dB, for
this Analyzer

» boolassociateBandwidtfvoid) const

Return true if thisAnalyzeris configured to peform bandwidth association to dis-
tribute noise energy among extracted Partials, and fals®ise energy will be col-
lected in noise Partials, labeled -1 in this Analyzer’s Ralttist.

doublebwRegionWidth(void) const
Return the width (in Hz) of the Bandwidth Association regiased by thig\nalyzer

doublecropTime(void) const

Return the crop time (maximum temporal displacement ofe-tfraquency data point
from the time-domain center of the analysis window, beyohidlwdata points are
considered "unreliable™) for thigwnalyzer

doublefreqDrift (void) const

Return the maximum allowable frequency difference betweesecutive Breakpoints
in a Partial envelope for thif\nalyzer

doublefregFloor(void) const

Return the frequency floor (minimum instantaneBasial frequency), in Hz, for this
Analyzer

doublefregResolutior{void) const

Return the frequency resolution (minimum instantaneoegquiency difference be-
tween Partials) for thif\nalyzer

doublehopTime(void) const

Return the hop time (which corresponds approximately toaerage density of
Partial envelopeBreakpointdata) for thisAnalyzer

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.3 Loris::Analyzer Class Reference 15

doublesidelobelLeve(void) const
Return the sidelobe attenutation level for the Kaiser asialyindow in positive dB.

doublewindowWidth(void) const

Return the frequency-domain main lobe width (measureddmiveero-crossings) of
the analysis window used by thAsalyzer

void setAmpFloor(double x)

Set the amplitude floor (lowest detected spectral ampljtid€negative) dB, for this
Analyzer

void setBwRegionWidtl{double x)
Set the width (in Hz) of the Bandwidth Association regioresiusy thisAnalyzer

void setCropTimgdouble x)

Set the crop time (maximum temporal displacement of a tirmquéncy data point
from the time-domain center of the analysis window, beyohdhwdata points are
considered "unreliable™) for thig\nalyzer

void setFreqDrift(double x)

Set the maximum allowable frequency difference betweesecative Breakpoints in
a Partial envelope for thig\nalyzer

void setFregFloofdouble x)

Set the frequency floor (minimum instantane®astial frequency), in Hz, for this
Analyzer

void setFreqResolutiofdouble x)

Set the frequency resolution (minimum instantaneous éecy difference between
Partials) for thisAnalyzer

void setHopTimgdouble x)

Set the hop time (which corresponds approximately to theageedensity oPartial
envelopeBreakpointdata) for thisAnalyzer

void setSidelobelLevdgdouble x)
Set the sidelobe attenutation level for the Kaiser analy@mlow in positive dB.

void setWindowWidth(double x)

Set the frequency-domain main lobe width (measured betaexercrossings) of the
analysis window used by thimalyzer

PartialList & partials(void)
Return a mutable reference to this Analyzer’s list of anedlyPartials.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

16 Loris Class Documentation

» const PartialList &artials(void) const
Return an immutable (const) reference to this Analyzestsof analyzed Partials.

3.3.1 Detailed Description

ClassAnalyzerrepresents a configuration of parameters for performingstgaed
Bandwidth-Enhanced Additive Analysis of sampled sounds.

The analysis process yields a collection of Partials, eaabinly a trio of syn-
chronous, non-uniformly- sampled breakpoint enveloppsasenting the time-varying
frequency, amplitude, and noisiness of a single bandwilthanced sinusoid. These
Partials are accumulated in tAmalyzer

The core analysis parameter is the frequency resolutienmimimum instantaneous
frequency spacing between partials. All other parametersnitially configured ac-
cording to this parameter (and the analysis window widtlspicified). Subsequent
parameter mutations are independent.

For more information about Reassigned Bandwidth-Enhaicedysis and the Re-
assigned Bandwidth-Enhanced Additive Sound Model, refethe Loris website:
www.cerlsoundgroup.org/Loris/.

3.3.2 Constructor & Destructor Documentation

3.3.2.1 Loris::Analyzer::Analyzer (double resolutionH? [explicit]

Construct a newAnalyzerconfigured with the given frequency resolution (minimum
instantaneous frequency difference between Partials).
All other Analyzerparameters are computed from the specified frequency tesalu

Parameters:
resolutionHz is the frequency resolution in Hz.

3.3.2.2 Loris::Analyzer::Analyzer (double resolutionHz double
windowWidthH2

Construct a newAnalyzerconfigured with the given frequency resolution (minimum
instantaneous frequency difference between Partialsjaalysis window width (main

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.3 Loris::Analyzer Class Reference 17

lobe, zero-to-zero).
All other Analyzerparameters are computed from the specified resolution amaiowi
width.

Parameters:
resolutionHz is the frequency resolution in Hz.

windowWidthHz is the main lobe width of the Kaiser analysis window in Hz.

3.3.2.3 Loris::Analyzer::Analyzer (constAnalyzer & other)

Construct a newAnalyzer having identical parameter configuration to another
Analyzet

The list of collected Partials is not copied.

Parameters:
other is theAnalyzerto copy.

3.3.3 Member Function Documentation

3.3.3.1 double Loris::Analyzer::ampFloor (void) const

Return the amplitude floor (lowest detected spectral aoqgsi}, in (negative) dB, for
this Analyzer

3.3.3.2 void Loris::Analyzer::analyze (const doublex bufBegin, const doublex
bufEnd, double sratg const Envelope &reference

Analyze a range of (mono) samples at the given sample ratdzjrand append the
extracted Partials to Analyzer’s PartialList (std::li§Rartials).

Use the specified envelope as a frequency referendedidialtracking.

Parameters:
bufBegin is a pointer to a buffer of floating point samples

bufEnd is (one-past) the end of a buffer of floating point samples
srate is the sample rate of the samples in the buffer

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

18 Loris Class Documentation

reference is an Envelope having the approximate frequency contoueetep of
the resulting Partials.

3.3.3.3 void Loris::Analyzer::analyze (const std::vecto< double > & veg
double srate const Envelope &reference

Analyze a vector of (mono) samples at the given sample ratelZ) and append the
extracted Partials to Analyzer’s PartialList (std::li§Rartials).

Use the specified envelope as a frequency referendedidialtracking.

Parameters:
vec is a vector of floating point samples

srate is the sample rate of the samples in the vector

reference is an Envelope having the approximate frequency contouectep of
the resulting Partials.

3.3.3.4 void Loris::Analyzer::analyze (const doublex bufBegin, const doublex
bufEnd, double srate

Analyze a range of (mono) samples at the given sample ratdZjrand collect the
resulting Partials.

Parameters:
bufBegin is a pointer to a buffer of floating point samples

bufEnd is (one-past) the end of a buffer of floating point samples
srate is the sample rate of the samples in the buffer

3.3.3.5 void Loris::Analyzer::analyze (const std::vecto< double > & veg
double srate

Analyze a vector of (mono) samples at the given sample ratelZ) and append the
extracted Partials to Analyzer’s PartialList (std::li§Rartials).

Parameters:
vec is a vector of floating point samples

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.3 Loris::Analyzer Class Reference 19

srate is the sample rate of the samples in the vector

3.3.3.6 double Loris::Analyzer::bwRegionWidth (void) canst

Return the width (in Hz) of the Bandwidth Association regarsed by thif\nalyzer

If zero, bandwidth enhancement is disabled.

3.3.3.7 void Loris::Analyzer::configure (doubleresolutionHz double
windowWidthH2

Configure thisAnalyzerwith the given frequency resolution (minimum instantarseou
frequency difference between Partials) and analysis wingith (main lobe, zero-to-
zero, in Hz).

All other Analyzerparameters are (re-)computed from the frequency resalatiwl
window width.

Parameters:
resolutionHz is the frequency resolution in Hz.

windowWidthHz is the main lobe width of the Kaiser analysis window in Hz.

There are three categories of analysis parameters:

« the resolution, and params that are usually related talgortical to) the resolu-
tion (frequency floor and drift)

 the window width and params that are usually related to dentical to) the
window width (hop and crop times)

* independent parameters (bw region width and amp floor)

3.3.3.8 double Loris::Analyzer::freqDrift (void) const

Return the maximum allowable frequency difference betwsegrsecutive Breakpoints
in aPartialenvelope for thifAnalyzer

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

20 Loris Class Documentation

3.3.3.9 double Loris::Analyzer::freqFloor (void) const

Return the frequency floor (minimum instantane®astialfrequency), in Hz, for this
Analyzet

3.3.3.10 double Loris::Analyzer::freqResolution (void)const

Return the frequency resolution (minimum instantanecemfency difference between
Partials) for thisAnalyzer

3.3.3.11 Analyzer& Loris::Analyzer::operator=(const Analyzer & rhs)

Construct a newAnalyzer having identical parameter configuration to another
Analyzet

The list of collected Partials is not copied.

Parameters:
rhs is theAnalyzerto copy.

3.3.3.12 void Loris::Analyzer::setAmpFloor (doublex)

Set the amplitude floor (lowest detected spectral ampl)iud€negative) dB, for this
Analyzer

Parameters:
X is the new value of this parameter.

3.3.3.13 void Loris::Analyzer::setBwRegionWidth (doubk x)
Set the width (in Hz) of the Bandwidth Association regionsdiby thisAnalyzer
If zero, bandwidth enhancement is disabled.

Parameters:
X is the new value of this parameter.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.3 Loris::Analyzer Class Reference 21

3.3.3.14 void Loris::Analyzer::setCropTime (doublex)
Set the crop time (maximum temporal displacement of a timeguency data point

from the time-domain center of the analysis window, beyoricty data points are
considered "unreliable") for thi&nalyzer.

Parameters:
X is the new value of this parameter.

3.3.3.15 void Loris::Analyzer::setFreqDrift (double x)

Set the maximum allowable frequency difference betweeseautive Breakpoints in
aPartialenvelope for this\nalyzer

Parameters:
X is the new value of this parameter.

3.3.3.16 void Loris::Analyzer::setFreqFloor (doublex)

Set the frequency floor (minimum instantanediestial frequency), in Hz, for this
Analyzet

Parameters:
X is the new value of this parameter.

3.3.3.17 void Loris::Analyzer::setFreqResolution (doule x)

Set the frequency resolution (minimum instantaneous f&aqy difference between
Partials) for thisAnalyzer

(Does not cause other parameters to be recomputed.)

Parameters:
X is the new value of this parameter.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

22 Loris Class Documentation

3.3.3.18 void Loris::Analyzer::setHopTime (doublex)

Set the hop time (which corresponds approximately to theaaeedensity oPartial
envelopeBreakpointdata) for thisAnalyzer.

Parameters:
X is the new value of this parameter.

3.3.3.19 void Loris::Analyzer::setSidelobelLevel (dould x)

Set the sidelobe attenutation level for the Kaiser analysislow in positive dB.

More negative numbers (e.g. -90) give very good sidelobectigin but cause the
window to be longer in time. Less negative numbers raisedhel lof the sidelobes,
increasing the likelihood of frequency-domain interferenbut allow the window to
be shorter in time.

Parameters:
X is the new value of this parameter.

3.3.3.20 void Loris::Analyzer::setWindowWidth (double x)

Set the frequency-domain main lobe width (measured betwerncrossings) of the
analysis window used by thisnalyzer

Parameters:
X is the new value of this parameter.

3.3.3.21 double Loris::Analyzer::sidelobeLevel (void) onst

Return the sidelobe attenutation level for the Kaiser aislyindow in positive dB.

Larger numbers (e.g. 90) give very good sidelobe rejectidrtause the window to be
longer in time. Smaller numbers (like 60) raise the levelraf sidelobes, increasing
the likelihood of frequency-domain interference, butalkhe window to be shorter in
time.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.3 Loris::Analyzer Class Reference 23

3.3.3.22 double Loris::Analyzer::windowWidth (void) const

Return the frequency-domain main lobe width (measured éatvzero-crossings) of
the analysis window used by thishalyzer

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

24 Loris Class Documentation

3.4 Loris::AssertionFailure Class Reference

Class of exceptions thrown when an assertion (usually septang an invariant condi-
tion, and usually detected by the Assert macro) is violated.

#i ncl ude <Exception. h>

Inheritance diagram for Loris::AssertionFailure::

| Loris::Exception |

T

| Loris::AssertionFaiIure#

Public Member Functions

 AssertionFailuréconst std::string &str, const std::string &where="")
string automatically using __ FILE__and __ LINE__.

3.4.1 Detailed Description

Class of exceptions thrown when an assertion (usually septeng an invariant condi-
tion, and usually detected by the Assert macro) is violated.

3.4.2 Constructor & Destructor Documentation

3.4.2.1 Loris::AssertionFailure::AssertionFailure (canst std::string & str, const
std::string & where="")

string automatically using __ FILE__and __ LINE__.

Parameters:
str is a string describing the exceptional condition

where is an option string describing the location in the sourceecisdm which
the exception was thrown (generated automatically by threwimacro).

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.5 Loris::PartialUtils::BandwidthScaler Class Reference 25

3.5 Loris::PartialUtils::BandwidthScaler Class Refer-
ence

Scale the bandwidth of the specifi€artialaccording to an envelope representing a
time-varying bandwidth scale value.

#include <PartialUils.h>

Inheritance diagram for Loris::PartialUtils::Bandwiteler::

| Loris::PartiaIUtiIs::PartiaIMutator|

| Loris::PartiaIUtiIs::BandwidthScaIe*r

Public Member Functions

» BandwidthScalefdouble x)
Construct a nevBandwidthScalefrom a constant scale factor.

» BandwidthScalefconst Envelope &e)

Construct a newBandwidthScalefrom an Envelope representing a time-varying
scale factor.

* void operator()Partial&p) const
Function call operator: apply a scale factor to the specifigadtial.

3.5.1 Detailed Description

Scale the bandwidth of the specifi@drtialaccording to an envelope representing a
time-varying bandwidth scale value.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

26 Loris Class Documentation

3.6 Loris::Breakpoint Class Reference

ClassBreakpointrepresents a single breakpoint in tRartial parameter (frequency,
amplitude, bandwidth) envelope.

#i ncl ude <Breakpoint. h>

Public Member Functions

» Breakpoint(void)
Construct a nevBreakpointwith all parameters initialized to 0 (needed for STL con-
tainability).

» Breakpoint(double f, double a, double b, double p=0.)
Construct a nevBreakpointwith the specified parameters.

» doubleamplitude(void) const
Return the amplitude of thBreakpoint

 doublebandwidth(void) const
Return the bandwidth (noisiness) coefficient of Brisakpoint

 doublefrequency(void) const
Return the frequency of thiBreakpoint

» doublephasgvoid) const
Return the phase of thBreakpoint

* void setAmplitude(double x)
Set the amplitude of thBreakpoint

* void setBandwidti{double x)
Set the bandwidth (noisiness) coefficient of Brisakpoint

« void setFrequencgdouble x)
Set the frequency of thireakpoint

* void setPhasédouble x)
Set the phase of thBreakpoint

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.6 Loris::Breakpoint Class Reference 27

« void addNoiseEnerggdouble enoise)

Add noise (bandwidth) energy to tHsseakpointby computing new amplitude and
bandwidth values.

3.6.1 Detailed Description

ClassBreakpointrepresents a single breakpoint in tRartial parameter (frequency,
amplitude, bandwidth) envelope.

Instantaneous phase is also stored, but is only used at #s ofha partial, or when it
makes a transition from zero to nonzero amplitude.

Loris Partials represent reassigned bandwidth-enhanodéinsomponents. ARartial
consists of a chain of Breakpoints describing the time-varyrequency, amplitude,
and bandwidth (noisiness) of the component. For more inddion about Reas-
signed Bandwidth-Enhanced Analysis and the ReassignedvBdth-Enhanced Ad-
ditive Sound Model, refer to the Loris website: www.cerlsdgroup.org/Loris/.

Breakpoints a leaf class, do not subclass.

3.6.2 Constructor & Destructor Documentation

3.6.2.1 Loris::Breakpoint::Breakpoint (double f, double a, double b, doublep =
0.)

Construct a nevBreakpointwith the specified parameters.

Parameters:
f is the intial frequency.

a is the initial amplitude.
b is the initial bandwidth.

p is the initial phase, if specified (if unspecified, 0 is assdjne

3.6.3 Member Function Documentation

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

28 Loris Class Documentation

3.6.3.1 void Loris::Breakpoint::addNoiseEnergy (doubleenoisg

Add noise (bandwidth) energy to thBreakpointby computing new amplitude and
bandwidth values.

enoise may be negative, but noise energy cannot be remoegdtive energy added)
in excess of the current noise energy.

Parameters:
enoise is the amount of noise energy to add to tBieakpoint

3.6.3.2 void Loris::Breakpoint::setAmplitude (double x)

Set the amplitude of thiBreakpoint

Parameters:
X is the new amplitude

3.6.3.3 void Loris::Breakpoint::setBandwidth (double x)

Set the bandwidth (noisiness) coefficient of tBigakpoint

Parameters:
X is the new bandwidth

3.6.3.4 void Loris::Breakpoint::setFrequency (doublex)

Set the frequency of thiBreakpoint

Parameters:
X is the new frequency.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.6 Loris::Breakpoint Class Reference

29

3.6.3.5 void Loris::Breakpoint::setPhase (double)
Set the phase of thBreakpoint

Parameters:
X is the new phase.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

30 Loris Class Documentation

3.7 Loris::BreakpointEnvelope Class Reference

A BreakpointEnvelopeepresents a linear segment breakpoint function with itefini
extension at each end (that is, evalutaing the envelopejthst end of the breakpoint
function yields the value at the nearest end point).

#i ncl ude <Breakpoi nt Envel ope. h>

Public Member Functions

» BreakpointEnvelopévoid)

Construct a nevBreakpointEnvelopbaving no breakpoints (and an implicit value of
0 everywhere).

» BreakpointEnvelop&ouble initialValue)

Construct and return a neBreakpointEnvelophaving a single breakpoint at 0 (and
an implicit value everywhere) of initialValue.

« virtual BreakpointEnvelope clone(void) const

Return an exact copy of thBreakpointEnvelop€polymorphic copy, following the
Prototype pattern).

virtual doublevalueAt(double t) const

Return the linearly-interpolated value of thireakpointEnvelopeat the specified
time.

void insert(double time, double value)

Insert a breakpoint representing the specified (time, Valpair into this
BreakpointEnvelope

« void insertBreakpoindouble time, double value)

Insert a breakpoint representing the specified (time, Valpair into this
BreakpointEnvelope

3.7.1 Detailed Description

A BreakpointEnvelopeepresents a linear segment breakpoint function with itefini
extension at each end (that is, evalutaing the envelopejtast end of the breakpoint
function yields the value at the nearest end point).

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.7 Loris::BreakpointEnvelope Class Reference 31

BreakpointEnvelopenplements the Envelope interface, described by the atistiass
Envelope.

BreakpointEnvelopiherits the types

* size_type
* val ue_type
eiterator

e const __iterator
and the member functions

* size_type size(void) const

* bool empty(void) const

* iterator begin(void)

* const_iterator begin(void) const
* iterator end(void)

« const_iterator end(void) const

from std::mapc double, double-.

3.7.2 Constructor & Destructor Documentation

3.7.2.1 Loris::BreakpointEnvelope::BreakpointEnvelope (void)

Construct a nevBreakpointEnvelopbaving no breakpoints (and an implicit value of
0 everywhere).

3.7.2.2 Loris::BreakpointEnvelope::BreakpointEnvelope (doubleinitialValue)
[explicit]

Construct and return a neBreakpointEnvelopbaving a single breakpoint at 0 (and
an implicit value everywhere) of initialValue.

Parameters:
initialValue is the value of thi8reakpointEnvelopat time O.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

32 Loris Class Documentation

3.7.3 Member Function Documentation

3.7.3.1 void Loris::BreakpointEnvelope::insert (doubletime, double value)

Insert a breakpoint representing the specified (time, VYalpair into this
BreakpointEnvelope

If there is already a breakpoint at the specified time, it ilreplaced with the new

breakpoint.

Parameters:
time is the time at which to insert a new breakpoint

value is the value of the new breakpoint

3.7.3.2 void Loris::BreakpointEnvelope::insertBreakpdnt (double time, double
value)

Insert a breakpoint representing the specified (time, Yalpair into this
BreakpointEnvelope

Same as insert, retained for backwards-compatibility.

3.7.3.3 virtual double Loris::BreakpointEnvelope::valueAt (double t) const
[virtual]

Return the linearly-interpolated value of tldseakpointEnvelopat the specified time.

Parameters:
t is the time at which to evaluate tHseakpointEnvelope

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.8 Loris::Channelizer Class Reference 33

3.8 Loris::Channelizer Class Reference

ClassChannelizerepresents an algorithm for automatic labeling of a seqeiehPar-
tials.

#i ncl ude <Channeli zer. h>

Public Member Functions

» Channelizefconst Envelope &refChanFreq, int refChanLabel)

Exceptions:
InvalidArgument if refChanLabel is not positive.

» ChannelizefconstChannelize&other)
Construct a newChannelizetthat is an exact copy of another.

» Channelize& operator5constChannelize&rhs)
Assignment operator: make thzhannelizeran exact copy of another.

» ~Channelizefvoid)
Destroy thisChannelizer

« void channelizgPartial&partial) const

Label aPartial with the number of the frequency channel containing the tgsta
portion of its (the Partial’s) energy.

» templatectypename Iter void channelizglter begin, Iter end) const

Assign eaclartial in the specified half-open (STL-style) range the label spoad-
ing to the frequency channel containing the greatest portibits (the Partial’s) en-

ergy.

» templatectypename Itex void operator(XIter begin, Iter end) const
Function call operator: same ashannelize()

Static Public Member Functions

* templatectypename Iter void channelizelter begin, Iter end, const Envelope
&refChanFreq, int refChanLabel)

Static member that constructs an instance and applies itecmence of Partials.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

34 Loris Class Documentation

3.8.1 Detailed Description

ClassChannelizerepresents an algorithm for automatic labeling of a sequehPar-
tials.

Partials must be labeled in preparation for morphing (deephe) to establish corre-
spondences between Partials in the morph source and targets

Channelized partials are labeled according to their aditerto a harmonic frequency
structure with a time-varying fundamental frequency. Tiegjfiency spectrum is par-
titioned into non-overlapping channels having time-vagytenter frequencies that are
harmonic (integer) multiples of a specified reference fesgpy envelope, and each
channel is identified by a unique label equal to its harmonitiber. EachPartialis
assigned the label corresponding to the channel contathingreatest portion of its
(the Partial's) energy.

A reference frequency Envelope for channelization and Hanel number to which
it corresponds (1 for an Envelope that tracks Btagtialat the fundamental frequency)
must be specified. The reference Envelope can be constrexégitly, point by point
(using, for example, thBreakpointEnvelopelass), or constructed automatically using
the FrequencyReference class.

Channelizers a leaf class, do not subclass.

3.8.2 Constructor & Destructor Documentation

3.8.2.1 Loris::Channelizer::Channelizer (const Envelop & refChanFreq int
refChanLabe)

Exceptions:
InvalidArgument if refChanLabel is not positive.

Parameters:
refChanFreq is an Envelope representing the center frequency of a channe

refChanLabel is the corresponding channel number (i.e. 1 if refChanFsdhe
lowest-frequency channel, and all other channels are ha@onof refChan-
Freq, or 2 if refChanFreq tracks the second harmonic, etc.).

3.8.2.2 Loris::Channelizer::Channelizer (constChannelizer & other)

Construct a nevChannelizethat is an exact copy of another.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.8 Loris::Channelizer Class Reference 35

The copy represents the same set of frequency channeldruzied from the same
reference Envelope and channel number.

Parameters:
other is theChannelizeto copy

3.8.3 Member Function Documentation

3.8.3.1 templatectypename Iter> void Loris::Channelizer::channelize (Iter
begin Iter end const Envelope &refChanFreq, int refChanLabe)
[static]

Static member that constructs an instance and applies seg@ence of Partials.

Construct &hannelizeusing the specified Envelope and reference label, and use it t
channelize a sequence of Partials.

Parameters:
begin is the beginning of a sequence of Partials to channelize.

end is the end of a sequence of Partials to channelize.
refChanFreq is an Envelope representing the center frequency of a channe

refChanLabel is the corresponding channel number (i.e. 1 if refChanFsdhe
lowest-frequency channel, and all other channels are ha@ionof refChan-
Freq, or 2 if refChanFreq tracks the second harmonic, etc.).

Exceptions:
InvalidArgument if refChanLabel is not positive.

If compiled with NO_TEMPLATE_MEMBERS defined, then begindaend must be
PartialList::iterators, otherwise they can be any typetefators over a sequence of
Partials.

3.8.3.2 templatectypename Iter> void Loris::Channelizer::channelize (Iter
begin Iter end) const

Assign eacliPartialin the specified half-open (STL-style) range the label gpoading
to the frequency channel containing the greatest portidts ¢the Partial’'s) energy.

Parameters:
begin is the beginning of the range of Partials to channelize

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

36 Loris Class Documentation

end is (one-past) the end of the range of Partials to channelize

If compiled with NO_TEMPLATE_MEMBERS defined, then begindaend must be
PartialList::iterators, otherwise they can be any typetefators over a sequence of
Partials.

3.8.3.3 void Loris::Channelizer::channelize Partial & partial) const

Label aPartialwith the number of the frequency channel containing thetgst@ortion
of its (the Partial's) energy.

Parameters:
partial is thePartialto label.

3.8.3.4 Channelizer& Loris::Channelizer::operator=(const Channelizer& rhs)

Assignment operator: make théhannelizean exact copy of another.

This Channelizeis made to represent the same set of frequency channels$iocing
from the same reference Envelope and channel number as rhs.

Parameters:
rhs is theChannelizeto copy

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.9 Loris::PartialUtils::Cropper Class Reference

37

3.9 Loris::PartialUtils::Cropper Class Reference

Trim a Partialby removing Breakpoints outside a specified time span.

#i nclude <Partial Uils. h>

3.9.1 Detailed Description

Trim a Partialby removing Breakpoints outside a specified time span.

Insert aBreakpointat the boundary when cropping occurs.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

38 Loris Class Documentation

3.10 Loris::Dilator Class Reference

ClassDilator represents an algorithm for non-uniformly expanding andtrazting
the Partial parameter envelopes according to the initial and targedir@) times of
temporal features.

#include <Dilator. h>

Public Member Functions

Dilator (void)
Construct a newbilator with no time points.

» templatectypename lterl, typename lter2Dilator (Iterl ibegin, Iterl iend,
Iter2 tbegin)

Construct a newDilator using a range of initial time points and a range of target
(desired) time points.

« void insert(double i, double t)
Insert a pair of initial and target time points.

« void dilate (Partial&p) const

Replace thePartial envelope with a new envelope having the same Breakpoints at

times computed to align temporal features in the sortedesecgiof initial time points
with their counterparts the sorted sequence of target tioiatp.

« void operator()Partial&p) const
Function call operator: same as dilate(Partial & p).

« void dilate (Marker &m) const

Compute a new time for the specified Marker usiveypTime() exactly asPartial
Breakpointtimes are recomputed.

« void operator(YMarker &m) const
Function call operator: same as dilate(Marker & m).

 templatectypename Ites void dilate (Iter dilate_begin, Iter dilate_end) const

Non-uniformly expand and contract the parameter envelopdse eachPartial in the
specified half-open range according to this Dilator’s stbiritial and target (desired)
times.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.10 Loris::Dilator Class Reference 39

» templatectypename Iter void operator()(Iter dilate_begin, Iter dilate_end)
const

Function call operator: same as dilate(Iter dilate_bediter dilate_end).

 doublewarpTime(double currentTime) const

Return the dilated time value corresponding to the spedifiiti@l time.

Static Public Member Functions

 templatectypename Partialslter, typename Timelterl, typename [farie-
void dilate (Partialsiter dilate_begin, Partialsiter dilate_endn@iterl ibegin,
Timelterl iend, Timelter2 tbegin)

Static member that constructs an instance and applies itecmence of Partials.

3.10.1 Detailed Description

ClassDilator represents an algorithm for non-uniformly expanding andtraeting
the Partial parameter envelopes according to the initial and targedin@) times of
temporal features.

It is frequently necessary to redistribute temporal evantkis way in preparation for
a sound morph. For example, when morphing instrument téhisssommon to align
the attack, sustain, and release portions of the sourcelsdayndilating or contracting
those temporal regions.

This same procedure can be applied to the Markers storddffifile, SdifFile, and
SpcFile (sedMarker.h.

3.10.2 Constructor & Destructor Documentation

3.10.2.1 templatectypename lterl, typename lter2> Loris::Dilator::Dilator
(Iterl ibegin, Iterl iend, Iter2 tbegin)

Construct a nevDilator using a range of initial time points and a range of target (de-
sired) time points.

The client must ensure that the target range has at leastrasat@aments as the initial
range.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

40 Loris Class Documentation

Parameters:
ibegin is the beginning of a sequence of initial, or source, tima{oi

iend is (one-past) the end of a sequence of initial, or sources finints.

tbegin is the beginning of a sequence of target time points; thiseece must be
as long as the sequence of initial time point described byiiband iend.

If compiled with NO_TEMPLATE_MEMBERS defined, this membearcapts only
const double: arguments.

3.10.3 Member Function Documentation

3.10.3.1 templatectypename Partialslter, typename Timelterl, typename
Timelter2 > void Loris::Dilator::dilate (Partialslter dilate_begin
Partialslter dilate_end Timelterl ibegin, Timelterl iend, Timelter2
tbegin [static]

Static member that constructs an instance and applies geqaence of Partials.

Parameters:
dilate_beginis the beginning of a sequence of Partials to dilate.

dilate_endis (one-past) the end of a sequence of Partials to dilate.
ibegin is the beginning of a sequence of initial, or source, time{oi
iend is (one-past) the end of a sequence of initial, or sources finints.

tbegin is the beginning of a sequence of target time points; thiseece must be
as long as the sequence of initial time point described hyifband iend.

If compiled with NO_TEMPLATE_MEMBERS defined, this membercapts only
PartialList::const_iterator arguments. Otherwise, tmismber also works for se-
quences of Markers. If compiled with NO_TEMPLATE_MEMBERSfithed, this
member accepts only const douBl@arguments for the times, otherwise, any iterator
will do..

See also:
Dilator::dilate(Partial & p) const
Dilator::dilate(Marker & m) const

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.10 Loris::Dilator Class Reference 41

3.10.3.2 templatectypename Iter> void Loris::Dilator::dilate (Iter
dilate_begin Iter dilate_end const

Non-uniformly expand and contract the parameter envelopd® eactPartialin the
specified half-open range according to this Dilator's glargtial and target (desired)
times.

Parameters:
dilate_beginis the beginning of a sequence of Partials to dilate.

dilate_endis (one-past) the end of a sequence of Partials to dilate.

If compiled with NO_TEMPLATE_MEMBERS defined, this membearcapts only
PartialList::const_iterator arguments. Otherwise, tlmismber also works for se-
quences of Markers.

See also:
Dilator::dilate(Partial & p) const
Dilator::dilate(Marker & m) const

3.10.3.3 void Loris::Dilator::dilate (Marker & m) const
Compute a new time for the specified Marker usimgrpTime() exactly asPartial
Breakpointimes are recomputed.

This can be used to dilate the Markers corresponding to aatalh of Partials.

Parameters:
m is the Marker whose time should be recomputed.

3.10.3.4 void Loris::Dilator::dilate (Partial & p) const

Replace théartialenvelope with a new envelope having the same Breakpointaest
computed to align temporal features in the sorted sequeriodial time points with
their counterparts the sorted sequence of target timegoint

Depending on the specification of initial and target timenpmithe dilatedPartialmay
have Breakpoints at times less than 0, even if the orighaatialdid not.

It is possible to have duplicate time points in either segeerDuplicate initial time
points result in very localized stretching. Duplicate &rgme points result in very
localized compression.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

42 Loris Class Documentation

If all initial time points are greater than 0, then an imgliane point at 0 is assumed in
both initial and target sequences, so the onset of a soungecstnetched without expl-
citly specifying a zero point in each vector. (This seemstrimdsitive, and only looks
like an inconsistency if clients are using negative timenpin theirDilator, or Partials
having Breakpoints before time 0, both of which are probaiplysual circumstances.)

Parameters:
p is thePartialto dilate.

3.10.3.5 void Loris::Dilator::insert (double i, doublet)

Insert a pair of initial and target time points.

Specify a pair of initial and target time points to be usedHtog Dilator, correspond-
ing, for example, to the initial and desired time of a patactemporal feature in an
analyzed sound.

Parameters:
i is an initial, or source, time point

t is a target time point

The time points will be sorted before they are used. If, ingbguences of initial and
target time points, there are exactly the same number ddliitne points preceding
i as target time points preceding t, then time i will be warpetime t in the dilation
process.

3.10.3.6 templatectypename Iter> void Loris::Dilator::operator() (Iter
dilate_begin Iter dilate_end const

Function call operator: same as dilate(Iter dilate_bdggn dilate_end).

If compiled with NO_TEMPLATE_MEMBERS defined, this membercapts only
PartialList::const_iterator arguments. Otherwise, tmismber also works for se-
quences of Markers.

See also:
Dilator::dilate(Partial & p) const
Dilator::dilate(Marker & m) const

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.10 Loris::Dilator Class Reference

43

3.10.3.7 void Loris::Dilator::operator() (Marker & m) const

Function call operator: same as dilate(Marker & m)).

See also:
Dilator::dilate(Marker & m) const

3.10.3.8 void Loris::Dilator::operator() (Partial & p) const
Function call operator: same as dilate(Partial & p).

See also:
Dilator::dilate(Partial & p) const

3.10.3.9 double Loris::Dilator::warpTime (double currentTime) const
Return the dilated time value corresponding to the spedifigidl time.

Parameters:
currentTime is a pre-dilated time.

Returns:
the dilated time corresponding to the initial time curremt@&

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

44 Loris Class Documentation

3.11 Loris::Distiller Class Reference

ClassDistiller represents an algorithm for "distilling" a group of Pasi#iat logically
represent a single component into a siriggetial

#include <Distiller.h>

Public Member Functions

« Distiller (double partialFadeTime=0.001, double partialSilen&:9.0001)

Construct a newDistiller using the specified fade time for gaps between Partials.

 templatectypename Container Container::iteratordistill (Container &par-
tials)

Distill labeled Partials in a collection leaving only a silggPartial per non-zero label.

 templatectypename Container Container::iteratooperator({Container &par-
tials)

Function call operator: same as distill(PartialList & pasts).

Static Public Member Functions

* templatectypename Container Container::iteratodistill (Container &partials,
double partialFadeTime, double partialSilentTime=01)00

Static member that constructs an instance and applies itsecmence of Partials.

3.11.1 Detailed Description

ClassDistiller represents an algorithm for "distilling" a group of Pasi#iat logically
represent a single component into a siriggetial

The sound morphing algorithm in Loris requires that Pagtiala given source be la-
beled uniquely, that is, no two Partials can have the samal.labhe Distiller en-
forces this condition. All Partials identified with a pattiar frequency channel (see
Channelizey, and, therefore, having a common label, are distilled énginglePartial
leaving at most a singlBartialper frequency channel and label. Channels that contain
no Partials are not represented in the distilled data. dsutthat are not labeled, that
is, Partials having label 0, are are "collated " into groufpsan-overlapping (in time)

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.11 Loris::Distiller Class Reference 45

Partials, assigned an unused label (greater than the Isdmiated with any frequency
channel), and fused into a singRartialper group. "Collating” is a bit like "sifting"
but non-overlapping Partials are grouped without regafdeiguency proximity. This
algorithm produces the smallest-possible number of edl®artials. Thanks to Ulrike
Axen for providing this optimal algorithm.

Distillation modifies thePartialcontainer (a PartialList). All Partials in the distilled
range having a common label are replaced by a siRgtéalin the distillation process.

3.11.2 Constructor & Destructor Documentation

3.11.2.1 Loris::Distiller::Distiller (double partialFadeTime= 0.001, double
partialSilentTime= 0.0001) [explicit]

Construct a newDistiller using the specified fade time for gaps between Partials.

When two non-overlapping Partials are distilled into a Eiartial the distilledPartial
fades out at the end of the earlRartialand back in again at the onset of the later one.
The fade time is the time over which these fades occur. Byultefase a 1 ms fade
time. The gap time is the additional time over whicRatialfaded out must remain at
zero amplitude before it can fade back in. By default, usepetigae of one tenth of a
millisecond, to prevent a pair of arbitrarily close null Bkgpoints being inserted.

Parameters:
partialFadeTime is the time (in seconds) over which Partials joined by déattibn
fade to and from zero amplitude. Default is 0.001 (one neitlend).

partialSilentTime is the minimum duration (in seconds) of the silent (zero-
amplitude) gap between two Partials joined by distillatiibefault is 0.0001
(one tenth of a millisecond).

3.11.3 Member Function Documentation

3.11.3.1 templatectypename Container> Container::iterator
Loris::Distiller::distill (Container & partials, double partialFadeTime
double partialSilentTime= 0.0001) [st ati c]

Static member that constructs an instance and applies geg@ence of Partials.

Construct istiller using default parameters, and use it to distill a sequeneartials.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

46 Loris Class Documentation

Postcondition:
All Partials in the collection are uniquely-labeled

Parameters:
partials is the collection of Partials to distill in-place

partialFadeTime is the time (in seconds) over which Partials joined by déattibn
fade to and from zero amplitude.

partialSilentTime is the minimum duration (in seconds) of the silent (zero-
amplitude) gap between two Partials joined by distillatiibefault is 0.0001
(one tenth of a millisecond).

Returns:
the position of the end of the range of distilled Partialsiclihis either the end of
the collection, oor the position of the first collatBdrtial composed of unlabeled
Partials in the original collection.

If compiled with NO_TEMPLATE_MEMBERS defined, then paramust be a
PartialList, otherwise it can be any container type stoRagtials that supports at least
bidirectional iterators.

3.11.3.2 templatectypename Container> Container::iterator
Loris::Distiller::distill (Container & partials)

Distill labeled Partials in a collection leaving only a si@@artialper non-zero label.

See also:
Distiller::distill(Container & partials)

3.11.3.3 templatectypename Container> Container::iterator
Loris::Distiller::operator() (Container & partials)

Function call operator: same as distill(PartialList & [pelet).

See also:
Distiller::distill(Container & partials)

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.12 Loris::Exception Class Reference 47

3.12 Loris::Exception Class Reference

Exceptionis a generic exception class for reporting exceptionalicirstances in Loris.
#i ncl ude <Exception. h>

Inheritance diagram for Loris::Exception::

Loris::Exception

[[
Loris::AssertionFailurel |Loris::|ndex0ulOfBound#| Loris::lnvalidArgumentl | Loris::InvalidObject | Loris::RuntimeError
| Loris::Invaliditerator | | Loris::InvalidPartial | | Loris::FiIeIOExceptionl

Public Member Functions

» Exception(const std::string &str, const std::string &where="")

string automatically using __FILE__and __LINE__.

« virtual ~Exception(void) throw ()
Destroy thisException

« const chax what(void) const throw ()

C-style string (char pointer).

» Exception& appendconst std::string &str)

Append the specified string to this Exception’s descriptéom return a reference to
this Exception

* const std::string &str (void) const

Return a read-only refernce to this Exception’s descripstring.

Protected Attributes

 std::string_sbuf

string for storing the exception description

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

48 Loris Class Documentation

3.12.1 Detailed Description

Exceptionis a generic exception class for reporting exceptionaticirstances in Loris.

Exceptionis derived from std:exception, and is the base for a hieyaafiderived
exception classes in Loris.

3.12.2 Constructor & Destructor Documentation

3.12.2.1 Loris::Exception::Exception (const std::strirg & str, const std::string
& where="")

string automaticallyusing __ FILE__and __ LINE__ .

Parameters:
str is a string describing the exceptional condition

where is an option string describing the location in the sourceecisdm which
the exception was thrown (generated automatically by threwimacro).

3.12.3 Member Function Documentation

3.12.3.1 Exception& Loris::Exception::append (const std::string & str)

Append the specified string to this Exception’s descriptamd return a reference to
this Exception

Parameters:
str is text to append to the exception description

Returns:
a reference to thiException

3.12.3.2 const std::string& Loris::Exception::str (void) const

Return a read-only refernce to this Exception’s descnipsiming.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.12 Loris::Exception Class Reference

49

Returns:
a string describing the exceptional condition

3.12.3.3 const chaf Loris::Exception::what (void) const throw ()

C-style string (char pointer).

Overrides std::exception::what.

Returns:
a C-style string describing the exceptional condition.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

50 Loris Class Documentation

3.13 Loris::FilelOException Class Reference

Class of exceptions thrown when file input or output fails.
#i ncl ude <Exception. h>

Inheritance diagram for Loris::FilelOException::

| Loris::Exception |

T

| Loris::RuntimeError |

T

| Loris::FiIeIOExceptiori

Public Member Functions

* FilelOException(const std::string &str, const std::string &where="")
string automatically using __ FILE__and __ LINE__.

3.13.1 Detailed Description

Class of exceptions thrown when file input or output fails.

3.13.2 Constructor & Destructor Documentation

3.13.2.1 Loris::FilelOException::FilelOException (corst std::string & str,
const std::string & where="")

string automatically using __ FILE__and __ LINE__.

Parameters:
str is a string describing the exceptional condition

where is an option string describing the location in the sourceecisdm which
the exception was thrown (generated automatically by threwimacro).

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.14 Loris::FourierTransform Class Reference 51

3.14 Loris::FourierTransform Class Reference

FourierTransfornprovides a simplified interface to the FFTW library (wwwfforg).

#i ncl ude <Fouri er Transform h>

Public Types

 typedef std::vector std::complex: double> >::size_type size_type
An unsigned integral type large enough to represent thetteafyany transform.

 typedef std::vector std::complex: double> >::iterator iterator
The type of a non-const iterator of (complex) transform dasp

* typedef std::vector std::complex: double> >::const_iterator const_iterator
The type of a const iterator of (complex) transform samples.

Public Member Functions

» FourierTransforngsize_typden)

Exceptions:
RuntimeError if the necessary buffers cannot be allocated, or there isreor e
configuring FFTW.

 FourierTransfornfconstFourierTransforn&rhs)

Initialize a newFourierTransformthat is a copy of another, having the same size and
the same buffer contents.

» ~FourierTransforngvoid)

Free the resources associated with tR@urierTransform

 FourierTransforn& operatorsconstFourierTransforn&rhs)

Make thisFourierTransforma copy of another, having the same size and buffer con-
tents.

* std::complex double> & operator[](size_typdandex)
Access (read/write) a transform sample by index.

* const std::complex double> & operator[](size_typandex) const

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

52 Loris Class Documentation

Access (read-only) a transform sample by index.

* iterator beginvoid)

Return an iterator refering to the beginning of the sequesfa@mplex samples in the
transform buffer.

« iterator endvoid)

complex samples in the transform buffer.

 const_iterator begifvoid) const

Return a const iterator refering to the beginning of the same of complex samples
in the transform buffer.

« const_iterator en¢void) const

complex samples in the transform buffer.

« void transform(void)

Compute the Fourier transform of the samples stored in thesfiorm buffer.

* size_type siz¢void) const

Return the length of the transform (in samples).

3.14.1 Detailed Description

FourierTransfornprovides a simplified interface to the FFTW library (wwwfforg).

Loris uses the FFTW library to perform efficient Fourier storms of arbitrary length.
Clients store and access the in-place transform data asuarses of std::complex
double>. Samples are stored in theurierTransforninstance using subscript or
iterator access, the transform is computed by the transfoember, and the trans-
formed samples replace the input samples, and are accegsedbgcript or iterator.
FourierTransforntomputes a complex transform, so it can be used to inverina-tra
form of real samples as well. Uses the standard library cerglass, which imple-
ments arithmetic operations. Does not use FFTW "wisdom'pted up transform
computation.

3.14.2 Constructor & Destructor Documentation

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.14 Loris::FourierTransform Class Reference 53

3.14.2.1 Loris::FourierTransform::FourierTransform (c onst FourierTransform
& rhs)

Initialize a newFourierTransfornthat is a copy of another, having the same size and
the same buffer contents.

Parameters:
rhs is the instance to copy

Exceptions:
RuntimeError if the necessary buffers cannot be allocated, or there isrram e
configuring FFTW.

3.14.3 Member Function Documentation

3.14.3.1 const_iterator Loris::FourierTransform::begin (void) const

Return a const iterator refering to the beginning of the saga of complex samples in
the transform buffer.

Returns:
a const iterator refering to the first position in the transfduffer.

3.14.3.2 iterator Loris::FourierTransform::begin (void)

Return an iterator refering to the beginning of the sequeficemplex samples in the
transform buffer.

Returns:
a non-const iterator refering to the first position in thesfarm buffer.

3.14.3.3 const_iterator Loris::FourierTransform::end (void) const

complex samples in the transform buffer.

Returns:
a const iterator refering to one past the last position irtridwesform buffer.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

54 Loris Class Documentation

3.14.3.4 iterator Loris::FourierTransform::end (void)
complex samples in the transform buffer.

Returns:
a non-const iterator refering to one past the last positidheé transform buffer.

3.14.3.5 FourierTransform & Loris::FourierTransform::operator= (const
FourierTransform & rhs)

Make thisFourierTransforna copy of another, having the same size and buffer con-
tents.

Parameters:
rhs is the instance to copy

Returns:
a refernce to this instance

Exceptions:
RuntimeError if the necessary buffers cannot be allocated, or there igran e
configuring FFTW.

3.14.3.6]

const std::complex double >& Loris::FourierTransform::operator[]s{ze_typein-
dex const

Access (read-only) a transform sample by index.

Use this member to fill the transform buffer before computimg transform, and to
access the samples after computing the transform. (inforesbeed)

Parameters:
index is the index or rank of the complex transform sample to acc&s® is the
first position in the buffer.

Returns:
const reference to the std::complexdouble > at the specified position in the
buffer.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.14 Loris::FourierTransform Class Reference 55

3.14.3.7]

std::complex double>& Loris::FourierTransform::operator[k{ze_typdndex
Access (read/write) a transform sample by index.

Use this member to fill the transform buffer before computimg transform, and to
access the samples after computing the transform. (infiorespeed)

Parameters:
index is the index or rank of the complex transform sample to acc&s® is the
first position in the buffer.
Returns:

non-const reference to the std::comptesdtouble> at the specified position in the
buffer.

3.14.3.8 size_typeloris::FourierTransform::size (void) const
Return the length of the transform (in samples).

Returns:
the length of the transform in samples.

3.14.3.9 void Loris::FourierTransform::transform (void)

Compute the Fourier transform of the samples stored in #restorm buffer.

The samples stored in the transform buffer (accessed by iodby iterator) are re-
placed by the transformed samples, in-place.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

56 Loris Class Documentation

3.15 Loris::IndexOutOfBounds Class Reference

Class of exceptions thrown when a subscriptable objectdessed with an index that
is out of range.

#i ncl ude <Exception. h>

Inheritance diagram for Loris::IndexOutOfBounds::

| Loris::Exception |

T

| Loris::IndexOutOfBound+

Public Member Functions

 IndexOutOfBoundgconst std::string &str, const std::string &where="")
string automatically using __ FILE__and __ LINE__.

3.15.1 Detailed Description

Class of exceptions thrown when a subscriptable objectdessed with an index that
is out of range.

3.15.2 Constructor & Destructor Documentation

3.15.2.1 Loris::IndexOutOfBounds::IndexOutOfBounds (@nst std::string &
str, const std::string & where="")

string automatically using __ FILE__and __ LINE__.

Parameters:
str is a string describing the exceptional condition

where is an option string describing the location in the sourceecisdm which
the exception was thrown (generated automatically by threwimacro).

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.16 Loris::InvalidArgument Class Reference 57

3.16 Loris:: InvalidArgument Class Reference

Class of exceptions thrown when a function argument is faarige invalid.
#i ncl ude <Exception. h>

Inheritance diagram for Loris::InvalidArgument::

| Loris::Exception |

T

| Loris::lnvalidArgument|

Public Member Functions

* InvalidArgument(const std::string &str, const std::string &where="")
string automatically using __FILE__and __LINE__.

3.16.1 Detailed Description

Class of exceptions thrown when a function argument is faarigk invalid.

3.16.2 Constructor & Destructor Documentation

3.16.2.1 Loris::InvalidArgument::InvalidArgument (con st std::string & str,
const std::string & where="")

string automatically using __ FILE__and __ LINE__.

Parameters:
str is a string describing the exceptional condition

where is an option string describing the location in the sourceecisdm which
the exception was thrown (generated automatically by thewlmacro).

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

58 Loris Class Documentation

3.17 Loris::Invaliditerator Class Reference

Class of exceptions thrown when an lterator is found to bdybamhfigured or other-
wise invalid.

#i ncl ude <Exception. h>

Inheritance diagram for Loris::Invalidlterator::

| Loris::Exception |

T

| Loris::lnvalidObject|

T

| Loris::lnvalidlterator|

Public Member Functions

* Invaliditerator(const std::string &str, const std::string &where="")
string automatically using __ FILE__and __ LINE__.

3.17.1 Detailed Description

Class of exceptions thrown when an Iterator is found to béybamhfigured or other-
wise invalid.

3.17.2 Constructor & Destructor Documentation

3.17.2.1 Loris::Invaliditerator::Invaliditerator (con st std::string & str, const
std::string & where="")

string automaticallyusing __ FILE__and __ LINE__ .

Parameters:
str is a string describing the exceptional condition

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.17 Loris::Invalidlterator Class Reference 59

where is an option string describing the location in the sourceecisdm which
the exception was thrown (generated automatically by thewlmacro).

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

60 Loris Class Documentation

3.18 Loris::InvalidObject Class Reference

Class of exceptions thrown when an object is found to be bamtifigured or otherwise
invalid.

#i ncl ude <Exception. h>

Inheritance diagram for Loris::InvalidObject::

| Loris::Exception |

T

| Loris::lnvalidObject|
i

|Loris::|nva|id|terator| | Loris::InvalidPartial

Public Member Functions

« InvalidObject(const std::string &str, const std::string &where="")
string automatically using __ FILE__and __ LINE__.

3.18.1 Detailed Description

Class of exceptions thrown when an object is found to be bastifigured or otherwise
invalid.

3.18.2 Constructor & Destructor Documentation

3.18.2.1 Loris::InvalidObject::InvalidObject (const std::string & str, const
std::string & where="")

string automaticallyusing __ FILE__and __ LINE__ .

Parameters:
str is a string describing the exceptional condition

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.18 Loris::InvalidObject Class Reference 61

where is an option string describing the location in the sourceecisdm which
the exception was thrown (generated automatically by thewlmacro).

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

62 Loris Class Documentation

3.19 Loris::InvalidPartial Class Reference

Class of exceptions thrown wherPartialis found to be badly configured or otherwise
invalid.

#i ncl ude <Partial.h>

Inheritance diagram for Loris::InvalidPartial::

| Loris::Exception |

T

| Loris::lnvalidObject|

T

| Loris::lnvalidPartiaI|

Public Member Functions

* InvalidPartial(const std::string &str, const std::string &where="")
string automatically using __ FILE__and __ LINE__.

3.19.1 Detailed Description

Class of exceptions thrown wherPartialis found to be badly configured or otherwise
invalid.

3.19.2 Constructor & Destructor Documentation

3.19.2.1 Loris::InvalidPartial::InvalidPartial (const std::string & str, const
std::string & where="")

string automaticallyusing __ FILE__and __ LINE__ .

Parameters:
str is a string describing the exceptional condition

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.19 Loris::InvalidPartial Class Reference 63

where is an option string describing the location in the sourceecisdm which
the exception was thrown (generated automatically byt hewlmacro).

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

64 Loris Class Documentation

3.20 Loris::Morpher Class Reference

ClassMorpherperforms sound morphing aithrtialparameter envelope interpolation
according to a trio of frequency, amplitude, and bandwidtirphing functions, de-
scribed by Envelopes.

#i ncl ude <Morpher. h>

Public Member Functions

Morpher(const Envelope &f)

Construct a newMorpher using the same morphing envelope for frequency, ampli-
tude, and bandwidth (noisiness).

» Morpher(const Envelope &ff, const Envelope &af, const Envelope &ow

Construct a nevMorpher using the specified morphing envelopes for frequency, am-
plitude, and bandwidth (noisiness).

» Morpher(constMorpheré&rhs)

Construct a new/orpherthat is a duplicate of rhs.

» ~Morpher(void)
Destroy thisMorpher.

» Morpher& operator5constMorpher&rhs)
« Partial morphPartiglconstPartial&src, constPartial&tgt, int assignLabel)

Morph a pair of Partials to yield a new morphdhrtial.

« void morph(PartialList::const_iterator beginSrc, PartialLisbnst_iterator end-
Src, PartialList::const_iterator beginTgt, Partialt:isbnst_iterator endTgt)

Morph two sounds (collections of Partials labeled to indecaorrespondences) into
a single labeled collection of Partials.

« void crossfade(PartialList::const_iterator beginSrc, PartialListnst_iterator
endSrc, PartialList::const_iterator beginTgt, Partistiiconst_iterator endTgt,
Partial::label_typdabel=0)

Crossfade Partials with no correspondences.

» Breakpoint morphBreakpoint&onst Breakpoint&srcBkpt, constBreakpoint
&tgtBkpt, double time) const

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.20 Loris::Morpher Class Reference 65

Compute morphed parameter values at the specified timey ths#rsource and target
Breakpoints (assumed to correspond exactly to the spedtifie).

» Breakpoint morphSrcBreakpoirftonst Breakpoint&bp, constPartial &tgt-
Partial, double time) const

Compute morphed parameter values at the specified timey tisérsourcéBreakpoint
(assumed to correspond exactly to the specified time) anthtpet Partial (whose
parameters are examined at the specified time).

» Breakpoint morphTgtBreakpoir(tonst Breakpoint&bp, constPartial &tgt-
Partial, double time) const

Compute morphed parameter values at the specified timey tieértargeBreakpoint
(assumed to correspond exactly to the specified time) anddineePartial (whose
parameters are examined at the specified time).

» Breakpoint fadeSrcBreakpoi(Breakpointbp, double time) const

Compute morphed parameter values at the specified time,gusia source
Breakpoint assumed to correspond exactly to the specified time, andrésg that
there is no corresponding targ@artial, so the sourc@reakpointshould be simply
faded.

» Breakpoint fadeTgtBreakpoiBreakpointp, double time) const

Compute morphed parameter values at the specified timegy thertargeBreakpoint
assumed to correspond exactly to the specified time, andréisguthat there is not
corresponding sourcPartial, so the targeBreakpointshould be simply faded.

« void setFrequencyFunctidiconst Envelope &f)
Assign a new frequency morphing envelope toNhispher.

« void setAmplitudeFunctioiconst Envelope &f)
Assign a new amplitude morphing envelope to k@ pher.

« void setBandwidthFunctiofconst Envelope &f)
Assign a new bandwidth morphing envelope to khispher.

» const Envelope &requencyFunctiofvoid) const
Return a reference to this Morpher’s frequency morphingetpe.

 const Envelope &litudeFunctiorfvoid) const
Return a reference to this Morpher’'s amplitude morphingetope.

 const Envelope &andwidthFunctioifvoid) const
Return a reference to this Morpher’s bandwidth morphingetope.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

66 Loris Class Documentation

doubleamplitudeShapévoid) const

Return the shaping parameter for the amplitude moprhingtion (only used in new
log-amplitude morphing).

void setAmplitudeShap@louble x)

Set the shaping parameter for the amplitude moprhing foncfonly used in new
log-amplitude morphing).

doubleminBreakpointGajjvoid) const
Return the minimum time gap (secs) between two Breakpaittte morphed Partials.

void setMinBreakpointGafdouble x)

Set the minimum time gap (secs) between two Breakpoints manphed Partials.

Partial::label_type sourceReferencelLafveid) const

Return the label of thPartial to be used as a referen&artial for the source sequence
in a morph of twdPartial sequences.

Partial::label_type targetReferencelLafpwlid) const

Return the label of thPartial to be used as a referen&artial for the target sequence
in a morph of twdPartial sequences.

void setSourceReferencelLalfBlartial::label_typd)

Set the label of th@artial to be used as a referen¢artial for the source sequence
in a morph of twdPartial sequences.

void setTargetReferencelLal@artial::label_typd)

Set the label of thPartial to be used as a referen@&artial for the target sequence in
a morph of twdPartial sequences.

PartialList & partials(void)
Return a reference to this Morpher’s list of morphed Pastial

 const PartialList &artials(void) const
Return a const reference to this Morpher’s list of morphediBks.

3.20.1 Detailed Description

ClassMorpherperforms sound morphing aithrtialparameter envelope interpolation
according to a trio of frequency, amplitude, and bandwidtrphing functions, de-
scribed by Envelopes.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.20 Loris::Morpher Class Reference 67

Sound morphing is achieved by interpolating the time-vagyfrequencies, ampli-
tudes, and bandwidths of corresponding partials obtair®d feassigned bandwidth-
enhanced analysis of the source and target souRdstial correspondences may be
established by labeling, using instances of@@annelizeandDistiller classes.

TheMorphercollects morphed Partials in a PartialList, that is acd#edb clients.

For more information about sound morphing using the Reassig
Bandwidth-Enhanced Additive Sound Model, refer to the &onivebsite:
www.cerlsoundgroup.org/Loris/.

Morpheris a leaf class, do not subclass.

3.20.2 Constructor & Destructor Documentation

3.20.2.1 Loris::Morpher::Morpher (const Envelope & f)

Construct a newlorpherusing the same morphing envelope for frequency, amplitude,
and bandwidth (noisiness).

Parameters:
f is the Envelope to clone for all three morphing functions.

3.20.2.2 Loris::Morpher::Morpher (const Envelope & ff, const Envelope &af,
const Envelope &bwf)

Construct a newMorpherusing the specified morphing envelopes for frequency, am-
plitude, and bandwidth (noisiness).

Parameters:
ff is the Envelope to clone for the frequency morphing function

af is the Envelope to clone for the amplitude morphing function
bwf is the Envelope to clone for the bandwidth morphing function

3.20.2.3 Loris::Morpher::Morpher (const Morpher & rhs)

Construct a newlorpherthat is a duplicate of rhs.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

68 Loris Class Documentation

Parameters:
rhs is theMorpherto duplicate

3.20.3 Member Function Documentation

3.20.3.1 double Loris::Morpher::amplitudeShape (void) @nst

Return the shaping parameter for the amplitude moprhingtiom (only used in new
log-amplitude morphing).

This shaping parameter controls the slope of the amplitudephing function, for
values greater than 1, this function gets nearly lineae (ile old amplitude morphing
function), for values much less than 1 (e.g. 1E-5) the slegeently curved and sounds
pretty "linear”, for very small values (e.g. 1E-12) the @is very steep and sounds
un-natural because of the huge jump from zero amplitudenpsmall amplitude.

3.20.3.2 void Loris::Morpher::crossfade (PartialList:: const_iterator beginSrg
PartialList::const_iterator endSrg PartialList::const_iterator
beginTgt PartialList::const_iterator endTgt Partial::label_type label =
0)

Crossfade Partials with no correspondences.

Unlabeled Partials (having the specified label) are cons@lto have no correspon-
dences, so they are just faded out, and not actually morgbaukistent with the mor-

phing behavior, crossfaded Partials are thinned, if negssathat no two Breakpoints
are closer in time than the minBreakpointGap.

The Partials in the first range are treated as componenteda$dhrce sound, corre-
sponding to a morph function value of 0, and those in the staomtreated as compo-
nents of the target sound, corresponding to a morph fungtibre of 1.

The crossfaded Partials are stored in the Morpher’s Paidtal

Parameters:
beginSrcis the beginning of the sequence of Partials correspondirsgrhorph
function value of 0.

endSrc is (one past) the end of the sequence of Partials correspgptala morph
function value of 0.

beginTgt is the beginning of the sequence of Partials correspondirsgrhorph
function value of 1.

endTgt is (one past) the end of the sequence of Partials correspgptala morph
function value of 1.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.20 Loris::Morpher Class Reference 69

label is the label to associate with unlabeled Partials (defaud.

3.20.3.3 Breakpoint Loris::Morpher::fadeSrcBreakpoint (Breakpoint bp,
double time) const

Compute morphed parameter values at the specified timey ti@rsourc®reakpoin
assumed to correspond exactly to the specified time, andnarsguhat there is no
corresponding targétartial so the sourc8reakpointshould be simply faded.

Parameters:
bp is theBreakpointcorresponding to a morph function value of 0.

time is the time corresponding to bp (used to evaluate the moggfhimctions).

Returns:
the fadedBreakpoint

3.20.3.4 Breakpoint Loris::Morpher::fadeTgtBreakpoint (Breakpoint bp,
double time) const

Compute morphed parameter values at the specified timey tisértargeBreakpoint
assumed to correspond exactly to the specified time, andnasguhat there is not
corresponding sourdeartial so the targeBreakpointshould be simply faded.

Parameters:
bp is theBreakpointcorresponding to a morph function value of 1.

time is the time corresponding to bp (used to evaluate the moggfhimctions).

Returns:
the fadedBreakpoint

3.20.3.5 double Loris::Morpher::minBreakpointGap (void) const

Return the minimum time gap (secs) between two Breakpairttss morphed Partials.

Morphing two Partials can generate a thitdrtialhaving Breakpoints arbitrarily close
together in time, and this makes morphs huge. Raising thisshiold limits the
Breakpointdensity in the morphed Partials. Default is 1/10 ms.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

70 Loris Class Documentation

3.20.3.6 void Loris::Morpher::morph (PartialList::cons t_iterator beginSrg
PartialList::const_iterator endSrg PartialList::const_iterator
beginTgt PartialList::const_iterator endTg)

Morph two sounds (collections of Partials labeled to inthazorrespondences) into a
single labeled collection of Partials.

Unlabeled Partials (having label 0) are crossfaded. Thephweat and crossfaded Par-
tials are stored in the Morpher’s PartialList.

The Partials in the first range are treated as componentedadhrce sound, corre-
sponding to a morph function value of 0, and those in the staoatreated as compo-
nents of the target sound, corresponding to a morph fungtibre of 1.

See also:
crossfademorphPartial

Parameters:
beginSrcis the beginning of the sequence of Partials correspondirsgrhorph
function value of 0.

endSrc is (one past) the end of the sequence of Partials correspgptala morph
function value of 0.

beginTgt is the beginning of the sequence of Partials correspondirsgrhorph
function value of 1.

endTgt is (one past) the end of the sequence of Partials correspptala morph
function value of 1.

3.20.3.7 Breakpoint Loris::Morpher::morphBreakpoints (const Breakpoint &
srcBkpt, constBreakpoint & tgtBkpt, doubletime) const

Compute morphed parameter values at the specified timeg tisnsource and target
Breakpoints (assumed to correspond exactly to the spetifir).

Parameters:
srcBkpt is theBreakpointcorresponding to a morph function value of 0.

tgtBkpt is theBreakpointcorresponding to a morph function value of 1.

time is the time corresponding to srcBkpt (used to evaluate thghiiog functions
and tgtPartial).

Returns:
the morphedreakpoint

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.20 Loris::Morpher Class Reference 71

3.20.3.8 Partial Loris::Morpher::morphPartial (const Partial & src, const
Partial & tgt, int assignLabel

Morph a pair of Partials to yield a new morphedrtial

Dummy Partials (having no Breakpoints) don’t contributd&®morph, except to cause
their opposite to fade out. Either (or neither) the sourc¢aogetPartialmay be a
dummyPartial(no Breakpoints), but not both. The morphedrtialhas Breakpoints
at times corresponding to eveBreakpointin both source Partials, omitting Break-
points that would be closer than the minBreakpointGap to firedecessor. The new
morphedPartialis assigned the specified label and returned.

Parameters:
src is thePartial corresponding to a morph function value of 0, evaluated et th
specified time.
tgt is the Partial corresponding to a morph function value of 1, evaluated at th
specified time.

assignLabelis the label assigned to the morpHeartial

Returns:
the morphedPartial

3.20.3.9 Breakpoint Loris::Morpher::morphSrcBreakpoint (const Breakpoint
& bp, constPartial & tgtPartial, doubletime) const

Compute morphed parameter values at the specified timey tisérsourcd&reakpoint
(assumed to correspond exactly to the specified time) andhtigetPartial (whose
parameters are examined at the specified time).

Precondition:
the targePartialmay not be a dummpartial(no Breakpoints).

Parameters:
srcBkpt is theBreakpointcorresponding to a morph function value of 0.

tgtPartial is thePartialcorresponding to a morph function value of 1, evaluated at
the specified time.

time is the time corresponding to srcBkpt (used to evaluate thghiing functions
and tgtPartial).

newpis the morphedPartialunder construction, the morph8deakpointis added
to thisPartial

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

72 Loris Class Documentation

3.20.3.10 Breakpoint Loris::Morpher::morphTgtBreakpoint (const Breakpoint
& bp, constPartial & tgtPartial, doubletime) const

Compute morphed parameter values at the specified timeg tisintargeBreakpoint
(assumed to correspond exactly to the specified time) anddhecePartial (whose
parameters are examined at the specified time).

Precondition:
the sourcéartialmay not be a dummipartial(no Breakpoints).

Parameters:
tgtBkpt is theBreakpointcorresponding to a morph function value of 1.

srcPartial is the Partialcorresponding to a morph function value of 0, evaluated
at the specified time.

time is the time corresponding to srcBkpt (used to evaluate thghiing functions
and tgtPartial).

newpis the morphedPartialunder construction, the morph&deakpointis added
to thisPartial

3.20.3.11 Morpher & Loris::Morpher::operator= (const Morpher & rhs)

Parameters:
rhs is theMorpherto duplicate

3.20.3.12 void Loris::Morpher::setAmplitudeShape (doulte x)

Set the shaping parameter for the amplitude moprhing fang¢tnly used in new log-
amplitude morphing).

This shaping parameter controls the slope of the amplitudephing function, for
values greater than 1, this function gets nearly lineae (ile old amplitude morphing
function), for values much less than 1 (e.g. 1E-5) the slegeently curved and sounds
pretty "linear”, for very small values (e.g. 1E-12) the @iis very steep and sounds
un-natural because of the huge jump from zero amplitudenpsmall amplitude.

Parameters:
X is the new shaping parameter, it must be positive.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.20 Loris::Morpher Class Reference 73

3.20.3.13 void Loris::Morpher::setMinBreakpointGap (double x)

Set the minimum time gap (secs) between two Breakpointsimtbrphed Partials.

Morphing two Partials can generate a thitdrtialhaving Breakpoints arbitrarily close
together in time, and this makes morphs huge. Raising thisshiold limits the
Breakpointdensity in the morphed Partials. Default is 1/10 ms.

Parameters:
X is the new minimum gap in seconds, it must be positive

Exceptions:
InvalidArgument if the specified gap is not positive

3.20.3.14 void Loris::Morpher::setSourceReferenceLabldPartial::label_type I)

Set the label of th@artialto be used as a referenkartialfor the source sequence in a
morph of twoPartialsequences.

The reference partial is used to compute frequencies for lear-amplitude Partials
whose frequency estimates are not considered reliable.réfeeencePartialis con-
sidered to have good frequency estimates throughout.n§dtte reference label to 0
indicates that no referen&artialshould be used for the source sequence.

3.20.3.15 void Loris::Morpher::setTargetReferenceLabég(Partial::label_type I)

Set the label of th@artialto be used as a refereneartialfor the target sequence in a
morph of twoPartialsequences.

The reference partial is used to compute frequencies for lear-amplitude Partials
whose frequency estimates are not considered reliable.ré&feeencePartialis con-
sidered to have good frequency estimates throughout.n§dtte reference label to 0
indicates that no referen&artialshould be used for the target sequence.

3.20.3.16 Partial::label_type Loris::Morpher::sourceReferencelLabel (void)
const

Return the label of th@artialto be used as a refereneartialfor the source sequence
in a morph of twaPartialsequences.

The reference partial is used to compute frequencies for lear-amplitude Partials
whose frequency estimates are not considered reliablerefaencePartialis consid-
ered to have good frequency estimates throughout. Theltkfael of 0 indicates that
no referencéartialshould be used for the source sequence.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

74 Loris Class Documentation

3.20.3.17 Partial::label_type Loris::Morpher::targetReferenceLabel (void)
const

Return the label of th@artialto be used as a referentartialfor the target sequence
in a morph of twoPartialsequences.

The reference partial is used to compute frequencies for lear-amplitude Partials
whose frequency estimates are not considered reliablerefarencdPartialis consid-
ered to have good frequency estimates throughout. Theltlfaal of O indicates that
no referencé@artialshould be used for the target sequence.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.21 Loris::Partial Class Reference 75

3.21 Loris::Partial Class Reference

Aninstance of clasRBartialrepresents a single component in the reassigned bandwidth-
enhanced additive model.

#i nclude <Partial.h>

Public Types

 typedef std::mag double,Breakpoint> container_type
underlyingBreakpointcontainer type, used by the iterator types defined below:

 typedefintlabel type
32 bit type for labeling Partials

» typedefPartial_lterator iterator
non-const iterator over (timd3reakpoinj pairs in thisPartial

 typedefPartial_Constlterator const_iterator
const iterator over (timeBreakpoinj pairs in thisPartial

» typedef container_type::size_typiee_type

size type for number of Breakpoints in tRiartial

Public Member Functions

 Partial(void)
Retun a new empty (no BreakpoinBgrtial.

« Partial(const_iteratobeg,const_iteratoend)
Retun a newrartial from a half-open (const) iterator range of time-Breakpgatrs.

« Partial(constPartial&other)

Return a newPartial that is an exact copy (has an identical set of Breakpoints, at
identical times, and the same label) of anotReartial.

» ~Partial(void)
Destroy thisPartial.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

76

Loris Class Documentation

Partial& operator5constPartial&other)

Make thisPartial an exact copy (has an identical set of Breakpoints, at idahtimes,
and the same label) of anothBartial.

iterator begin(void)

Return an iterator refering to the position of the fiBteakpointin this Partial's
envelope, oend()if there are no Breakpoints in tHeartial.

const_iterator begifvoid) const

Return a const iterator refering to the position of the figsseakpointin this Partial’s
envelope, oend()if there are no Breakpoints in tHeartial.

iterator endvoid)

Return an iterator refering to the position past the I&takpointin this Partial's
envelope.

const_iterator en¢void) const

Return a const iterator refering to the position past the Bxgakpointin this Partial’'s
envelope.

iterator erasé€iteratorbeg,iteratorend)

Breakpointremoval: erase the Breakpoints in the specified range, andmen iter-
ator referring to the position after the, erased range.

iterator findAfter(double time)

Return an iterator refering to the insertion position foBaeakpointat the specified
time (that is, the position of the firBreakpointat a time later than the specified time).

const_iterator findAftefdouble time) const

Return a const iterator refering to the insertion position & Breakpointat the spec-
ified time (that is, the position of the fiBteakpointat a time later than the specified
time).

iterator inser{double time, condBreakpoint&bp)

Breakpointinsertion: insert a copy of the specifi@deakpointin the parameter enve-
lope at time (seconds), and return an iterator refering te gosition of the inserted
Breakpoint

size_type sizévoid) const
Return the number of Breakpoints in titartial.

doubleduration(void) const
Return the duration (in seconds) spanned by the Breakpuwiritss Partial.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.21 Loris::Partial Class Reference 77

 doubleendTime(void) const
Return the time (in seconds) of the |&takpointin this Partial.

 Breakpoint& first (void)
Return a reference to the firBreakpointin the Partial’s envelope.

« constBreakpoint& first (void) const
Return a const reference to the fisteakpointin the Partial’'s envelope.

« doubleinitialPhasgvoid) const

Return the phase (in radians) of thifartial at its start time (the phase of the first
Breakpoinj.

* label_type labe{void) const
Return the 32-bit label for thiBartial as an integer.

» Breakpoint& last(void)
Return a reference to the laBreakpointin the Partial’s envelope.

 constBreakpoint& last(void) const
Return a const reference to the I&teakpointin the Partial’s envelope.

 size_type numBreakpoinfgoid) const
Same asize() Return the number of Breakpoints in tifartial.

 doublestartTime(void) const
Return the time (in seconds) of the fiBseakpointin this Partial.

« void absorh(constPartial&other)

Absorb another Partial's energy as noise (bandwidth), bgumeulating the other’s
energy as noise energy in the portion of this Partial’s eopelthat overlaps (in time)
with the other Partial’s envelope.

 void setLabel(label_typd)
Set the label for thi®artial to the specified 32-bit value.

* iterator eras€iteratorpos)
Remove th8reakpointat the position of the given iterator, invalidating the déor.

« iterator findNearedidouble time)

Return an iterator refering to the position of tBeeakpointin this Partial nearest the
specified time.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

78

Loris Class Documentation

const_iterator findNeareg&louble time) const

Return a const iterator refering to the position of Bieeakpointin this Partial nearest
the specified time.

Partial split(iteratorpos)

Break thisPartial at the specified position (iterator).

double amplitudeAt (double time, double fadeTim&hortestSafeFadeTime
const

Return the interpolated amplitude of titartial at the specified time.

doublebandwidthAt(double time) const

Return the interpolated bandwidth (noisiness) coeffictérihis Partial at the speci-
fied time.

doublefrequencyAt(double time) const
Return the interpolated frequency (in Hz) of tRartial at the specified time.

doublephaseAtfdouble time) const
Return the interpolated phase (in radians) of tRextial at the specified time.

Breakpoint parametersAt (double time, double fade-
Time=ShortestSafeFadeTimeonst

Return the interpolated parameters of thartial at the specified time, same as
building aBreakpointfrom the results of frequencyAt, ampitudeAt, bandwidthAd,
phaseAt, but performs only of#eakpointenvelope search.

Static Public Attributes

» const double&ShortestSafeFadeTime

Define the default fade time for computing amplitude at trasexi aPartial.

3.21.1 Detailed Description

An instance of clasPartialrepresents a single component in the reassigned bandwidth-
enhanced additive model.

A Partialconsists of a chain of Breakpoints describing the time-vayrfrequency, am-
plitude, and bandwidth (or noisiness) envelopes of the aorapt, and a 4-byte label.
The Breakpoints are non-uniformly distributed in time. Roore information about

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.21 Loris::Partial Class Reference 79

Reassigned Bandwidth-Enhanced Analysis and the ReassRpredwidth-Enhanced
Additive Sound Model, refer to the Loris website: www.cetisdgroup.org/Loris/.

The constituent time-tagged Breakpoints are accessibtrigi Partialiterator and
Partial::const_iteratointerfaces. These iterator classes implement the interfac
bidirectional iterators in the STL, including pre and postrement and decrement,
and dereferencing. Dereferencing a Partial::itertatd®atial::const_itertator yields a
reference to @8reakpoint Additionally, these iterator classes have breakpoim(a
time() members, returning thigreakpoint(by reference) at the current iterator position
and the time (by value) corresponding to tBa¢akpoint

Partialis a leaf class, do not subclass.

Most of the implementation d?artialdelegates to a few container-dependent members.
The following members are container-dependent, the otleeniners are implemented

in terms of these: default construction copy (construgtmperator= (assign) opera-
tor== (equivalence) size insert(pos, Breakpoint) erase()bfindAfter(time) begin
(const and non-const) end (const and non-const) first (@mshon-const) last (const
and non-const)

3.21.2 Constructor & Destructor Documentation

3.21.2.1 Loris::Partial::Partial (const_iterator beg const_iterator end)

Retun a newPartialfrom a half-open (const) iterator range of time-Breakppaits.

Parameters:
beg is the beginning of the range of time-Breakpoint pairs t@ihito the new
Partial

end is the end of the range of time-Breakpoint pairs to insed the newPartial

3.21.2.2 Loris::Partial::Partial (const Partial & other)

Return a newPartialthat is an exact copy (has an identical set of Breakpointdeat
tical times, and the same label) of anotReartial

Parameters:
other is thePartialto copy.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

80 Loris Class Documentation

3.21.3 Member Function Documentation

3.21.3.1 void Loris::Partial::absorb (constPartial & other)

Absorb another Partial’'s energy as noise (bandwidth), lbymcilating the other’s en-
ergy as noise energy in the portion of this Partial's envelhat overlaps (in time) with
the other Partial’s envelope.

Parameters:
other is thePartialto absorb.

3.21.3.2 double Loris::Partial::amplitudeAt (double time, double fadeTime=
ShortestSafeFadeTimgconst

Return the interpolated amplitude of tiiiartialat the specified time.

If non-zero fadeTime is specified, then the amplitude at tiasef thePartialis com-
puted using a linear fade. The default fadeTime is ShorédsEadeTime, see the defi-
nition of ShortestSafeFadeTime, above.

Parameters:
time is the time in seconds at which to evaluate Bastial

fadeTime is the duration in seconds over whiehartialamplitudes fade at the ends.
The default value is ShortestSafeFadeTime, 1 ns.

Returns:
The amplitude of thi®artialat the specified time.

Precondition:
ThePartialmust have at least origreakpoint

Exceptions:
InvalidPartial if the Partialhas no Breakpoints.

3.21.3.3 double Loris::Partial::bandwidthAt (double time) const

Return the interpolated bandwidth (noisiness) coefficdthis Partialat the specified
time.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.21 Loris::Partial Class Reference 81

At times beyond the ends of thRartial return the bandwidth coefficient at the nearest
envelope endpoint.

Parameters:
time is the time in seconds at which to evaluate Baetial

Returns:
The bandwidth of thi®artialat the specified time.

Precondition:
The Partialmust have at least ori&reakpoint

Exceptions:
InvalidPartial if the Partialhas no Breakpoints.

3.21.3.4 double Loris::Partial::duration (void) const

Return the duration (in seconds) spanned by the Breakpiaittgs Partial

Note that the synthesized onset time will differ, dependinghe fade time used to
synthesize thi®artial(see class Synthesizer).

3.21.3.5 const_iterator Loris::Partial::end (void) const
Return a const iterator refering to the position past theBasakpointin this Partial's
envelope.

The iterator returned bgnd() (like the iterator returned by thend() member of any
STL container) does not refer to a valideakpoint

3.21.3.6 iterator Loris::Partial::end (void)
Return an iterator refering to the position past the Bastakpointin this Partial’'s enve-
lope.

The iterator returned bgnd() (like the iterator returned by thend() member of any
STL container) does not refer to a valkdeakpoint

3.21.3.7 double Loris::Partial::endTime (void) const

Return the time (in seconds) of the I&takpointin this Partial

Note that the synthesized onset time will differ, dependinghe fade time used to
synthesize thi®artial(see class Synthesizer).

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

82 Loris Class Documentation

3.21.3.8 iterator Loris::Partial::erase (iterator pog

Remove théBreakpointat the position of the given iterator, invalidating the dter.

Return a iterator referring to the next valid position, othie end of thePartialif the
lastBreakpointis removed.

Parameters:
pos is the position of the time-Breakpoint pair to be removed.

Returns:
The position (iterator) of the time-Breakpoint pair aftee one that was removed.

Postcondition:
The iterator pos is invalid.

3.21.3.9 iterator Loris::Partial::erase (iterator beg iterator end)

Breakpointremoval: erase the Breakpoints in the specified range, amchran iterator
referring to the position after the, erased range.

Parameters:
beg is the beginning of the range of Breakpoints to erase

end is the end of the range of Breakpoints to erase

Returns:
The position of the firsBreakpointafter the range of removed Breakpoints, or
end()if the lastBreakpointin the Partialwas removed.

3.21.3.10 const_iterator Loris::Partial::findAfter (double time) const

Return a const iterator refering to the insertion positmreBreakpointat the specified
time (that is, the position of the firB8reakpointat a time later than the specified time).

Parameters:
time is the time in seconds to find

Returns:
The last position (iterator) at which Breakpointat the specified time could be
inserted (the position of the fir&8reakpointater than time).

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.21 Loris::Partial Class Reference 83

3.21.3.11 iterator Loris::Partial::findAfter (double time)

Return an iterator refering to the insertion position foBr@eakpointat the specified
time (that is, the position of the firB8reakpointat a time later than the specified time).

Parameters:
time is the time in seconds to find

Returns:
The last position (iterator) at which Breakpointat the specified time could be
inserted (the position of the firBreakpointater than time).

3.21.3.12 const_iterator Loris::Partial::findNearest (double time) const

Return a const iterator refering to the position of Breakpointin this Partialnearest
the specified time.

Parameters:
time is the time to find.

Returns:
The position (iterator) of the time-Breakpoint pair neaastime) to the specified
time.

3.21.3.13 iterator Loris::Partial::findNearest (double time)

Return an iterator refering to the position of tBeeakpointin this Partialnearest the
specified time.

Parameters:
time is the time to find.

Returns:
The position (iterator) of the time-Breakpoint pair neafastime) to the specified
time.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

84 Loris Class Documentation

3.21.3.14 consBreakpoint& Loris::Partial::first (void) const

Return a const reference to the fiBseakpointin the Partial’s envelope.

Exceptions:
InvalidPartial if there are no Breakpoints.

3.21.3.15 Breakpoint& Loris::Partial::first (void)

Return a reference to the fiBteakpointin the Partial’s envelope.

Exceptions:
InvalidPartial if there are no Breakpoints.

3.21.3.16 double Loris::Partial::frequencyAt (doubletime) const

Return the interpolated frequency (in Hz) of tRartialat the specified time.

At times beyond the ends of thHeartial return the frequency at the nearest envelope
endpoint.

Parameters:
time is the time in seconds at which to evaluate faetial

Returns:
The frequency of thi®artialat the specified time.

Precondition:
ThePartialmust have at least origreakpoint

Exceptions:
InvalidPartial if the Partialhas no Breakpoints.

3.21.3.17 double Loris::Partial::initialPhase (void) cast
Return the phase (in radians) of thartial at its start time (the phase of the first
Breakpoin}.

Note that the initial synthesized phase will differ, depiegcon the fade time used to
synthesize thi®artial(see class Synthesizer).

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.21 Loris::Partial Class Reference 85

3.21.3.18 iterator Loris::Partial::insert (double time, constBreakpoint & bp)
Breakpointinsertion: insert a copy of the specifi@teakpointin the parameter en-
velope at time (seconds), and return an iterator referirthaqgosition of the inserted
Breakpoint

Parameters:
time is the time in seconds at which to insert the rigsgakpoint

bp is the newBreakpointo insert.

Returns:
the position (iterator) of the newly-inserted time-Breakf pair.

3.21.3.19 consBreakpoint& Loris::Partial::last (void) const
Return a const reference to the IBseakpointin the Partial’'s envelope.

Exceptions:
InvalidPartial if there are no Breakpoints.

3.21.3.20 Breakpoint& Loris::Partial::last (void)
Return a reference to the I&Bteakpointin the Partial’s envelope.

Exceptions:
InvalidPartial if there are no Breakpoints.

3.21.3.21 Partial& Loris::Partial::operator= (const Partial & other)

Make thisPartialan exact copy (has an identical set of Breakpoints, at ideltimes,
and the same label) of anotheartial

Parameters:
other is thePartialto copy.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

86 Loris Class Documentation

3.21.3.22 Breakpoint Loris::Partial::;parametersAt (double time, double
fadeTime= ShortestSafeFadeTimgconst

Return the interpolated parameters of thstialat the specified time, same as building
aBreakpointfrom the results of frequencyAt, ampitudeAt, bandwidthexid phaseAt,
but performs only on8reakpointenvelope search.

If non-zero fadeTime is specified, then the amplitude at tidsef thePartialis coom-
puted using a linear fade. The default fadeTime is ShoréésEadeTime.

Parameters:
time is the time in seconds at which to evaluate faetial

fadeTime is the duration in seconds over whiehartialamplitudes fade at the ends.
The default value is ShortestSafeFadeTime, 1 ns.

Returns:
A Breakpointdescribing the parameters of ttiartialat the specified time.

Precondition:
ThePartialmust have at least origreakpoint

Exceptions:
InvalidPartial if the Partialhas no Breakpoints.

3.21.3.23 double Loris::Partial::phaseAt (doubletime) const

Return the interpolated phase (in radians) of frastialat the specified time.
At times beyond the ends of thiRartial return the extrapolated from the nearest enve-
lope endpoint (assuming constant frequency, as reportéegyencyAt().

Parameters:
time is the time in seconds at which to evaluate faetial

Returns:
The phase of thiPartialat the specified time.

Precondition:
ThePartialmust have at least origreakpoint

Exceptions:
InvalidPartial if the Partialhas no Breakpoints.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.21 Loris::Partial Class Reference 87

3.21.3.24 size_typeloris::Partial::size (void) const

Return the number of Breakpoints in thiartial

Returns:
The number of Breakpoints in thizartial

3.21.3.25 Partial Loris::Partial::split (iterator po9g

Break thisPartialat the specified position (iterator).

TheBreakpointat the specified position becomes the fisstakpointin a newPartial
Breakpoints at the specified position and subsequent positire removed from this
Partialand added to the nefRartial which is returned.

Parameters:
pos is the position at which to split thiBartial

Returns:
A new Partialconsisting of time-Breakpoint pairs beginning with pos artend-
ing to the end of thi®artial

Postcondition:
All positions beginning with pos and extending to the enchif Partialhave been
removed.

3.21.3.26 double Loris::Partial::startTime (void) const

Return the time (in seconds) of the fisteakpointin this Partial

Note that the synthesized onset time will differ, dependinghe fade time used to
synthesize thi®artial(see class Synthesizer).

3.21.4 Member Data Documentation

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

88 Loris Class Documentation

3.21.4.1 const doubléoris::Partial::ShortestSafeFadeTime [stati c]

Define the default fade time for computing amplitude at thdsasf aPartial

Floating point round-off errors make fadeTime == 0.0 dangerand unpredictable.
1 ns is short enough to prevent rounding errors in the legsif&ant bit of a 48-hit
mantissa for times up to ten hours.

1 nanosecond, see Partial.C

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.22 Loris::Partial_Constlterator Class Reference 89

3.22 Loris::Partial_Constlterator Class Reference

Const iterator for thé oris::Partial Breakpointap.

#i nclude <Partial.h>

Public Member Functions

» Partial_Constlteratdvoid)

Construct a new iterator referring to no position in aRgrtial.

 Partial_ConstlteratqconstPartial_Iterato&other)
Construct a new const iterator from a non-const iterator.

 Partial_Constlterata® operator++)

Pre-increment operator - advance the position of the it@raind return the iterator
itself.

* Partial_Constlterata$: operator—)

Pre-decrement operator - move the position of the iteratmitby one and return the
iterator itself.

 Partial_Constlterator operator<{int)

Post-increment operator - advance the position of the ttarand return a copy of
the iterator before it was advanced.

 Partial_Constlterator operatofint)

Post-decrement operator - move the position of the iterbgmk by one and return a
copy of the iterator before it was decremented.

 constBreakpoint& operatorx (void) const
Dereference operator.

 constBreakpoint« operator— (void) const
Pointer operator.

 constBreakpoint& breakpoinivoid) const

Breakpointaccessor.

* doubletime (void) const

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

90 Loris Class Documentation

Time accessor.

Friends

* bool operator==(constPartial _Constlterato&lhs, constPartial _Constlterator
&rhs)

Equality comparison operator.

* bool operator!=(constPartial_Constlterato&lhs, constPartial _Constlterator
&rhs)

Inequality comparison operator.

3.22.1 Detailed Description

Const iterator for thé oris::Partial Breakpointap.

Wraps the non-const iterator for the (tilBegakpoinf pair container
Partial::container_type Partial_lteratorimplements a bidirectional iterator inter-
face, and additionally offers time ari8teakpoint(reference) access througime()
andbreakpoint(members.

3.22.2 Constructor & Destructor Documentation

3.22.2.1 Loris::Partial_Constlterator::Partial_Constlterator (const
Partial_lterator & other)

Construct a new const iterator from a non-const iterator.

Parameters:
other a non-const iterator from which to make a read-only copy.

3.22.3 Member Function Documentation

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.22 Loris::Partial_Constlterator Class Reference 91

3.22.3.1 consBreakpoint& Loris::Partial_Constlterator::breakpoint (void)
const

Breakpointaccessor.

Returns:
A const reference to thBreakpointat the position of this iterator.

3.22.3.2 consBreakpoint& Loris::Partial_Constlterator::operator x* (void)
const

Dereference operator.

Returns:
A const reference to thBreakpointat the position of this iterator.

3.22.3.3 Partial_Constlterator Loris::Partial_Constlterator::operator++ (int)

Post-increment operator - advance the position of thetdeeand return a copy of the
iterator before it was advanced.

The int argument is unused compiler magic.

Returns:
An iterator that is a copy of this iterator before being adexh

Precondition:
The iterator must be a valid position before the end in sBarial

3.22.3.4 Partial_Constlterator & Loris::Partial_Constlterator::operator++ ()

Pre-increment operator - advance the position of the teratd return the iterator
itself.

Returns:
This iterator (reference to self).

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

92 Loris Class Documentation

Precondition:
The iterator must be a valid position before the end in sBangial

3.22.3.5 Partial_Constlterator Loris::Partial_Constlterator::operator— (int)

Post-decrement operator - move the position of the itetaz@ok by one and return a
copy of the iterator before it was decremented.

The int argument is unused compiler magic.

Returns:
An iterator that is a copy of this iterator before being deweated.

Precondition:
The iterator must be a valid position after the beginningoimsPartial

3.22.3.6 Partial_Constlterator& Loris::Partial_Constlterator::operator— ()

Pre-decrement operator - move the position of the iteraok by one and return the
iterator itself.

Returns:
This iterator (reference to self).

Precondition:
The iterator must be a valid position after the beginningoimsPartial

3.22.3.7 consBreakpointx Loris::Partial_Constlterator::operator — (void)
const

Pointer operator.

Returns:
A const pointer to th@reakpointat the position of this iterator.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.22 Loris::Partial_Constlterator Class Reference 93

3.22.3.8 double Loris::Partial_Constlterator::time (void) const
Time accessor.

Returns:
The time in seconds of tHereakpointat the position of this iterator.

3.22.4 Friends And Related Function Documentation

3.22.4.1 bool operator!= (consPartial_Constlterator & lhs, const
Partial_Constlterator & rhs) [fri end]

Inequality comparison operator.

Parameters:
Ihs the iterator on the left side of the operator.

rhs the iterator on the right side of the operator.

Returns:
false if the two iterators refer to the same position in theesRartial true other-
wise.

3.22.4.2 bool operator== (consPartial_Constlterator & Ihs, const
Partial_Constlterator & rhs) [fri end]

Equality comparison operator.

Parameters:
Ihs the iterator on the left side of the operator.

rhs the iterator on the right side of the operator.

Returns:
true if the two iterators refer to the same position in the s®artial false other-
wise.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

Loris Class Documentation

3.23 Loris::Partial_lterator Class Reference

Non-const iterator for theoris::Partial Breakpointap.

#i ncl ude <Partial.h>

Public Member Functions

» Partial_Iteratofvoid)

Construct a new iterator referring to no position in aRgrtial.

 Partial_Iterato& operator++()

Pre-increment operator - advance the position of the iterand return the iterator
itself.

* Partial_lterato®& operator)

Pre-decrement operator - move the position of the iteratmkiby one and return the
iterator itself.

« Partial_lIterator operator+int)

Post-increment operator - advance the position of the farand return a copy of
the iterator before it was advanced.

 Partial_lterator operatoi(int)

Post-decrement operator - move the position of the iteragmk by one and return a
copy of the iterator before it was decremented.

* Breakpoint& operator (void) const

Dereference operator.

» Breakpointx operator— (void) const
Pointer operator.

» Breakpoint& breakpoinivoid) const

Breakpointaccessor.

« doubletime (void) const
Time accessor.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.23 Loris::Partial_Iterator Class Reference 95

Friends

 booloperator==constPartial_lterato&lhs, constPartial_Iterato&rhs)

Equality comparison operator.

 booloperator!=constPartial_Iterato&lhs, constPartial_Iterato&rhs)

Inequality comparison operator.

3.23.1 Detailed Description

Non-const iterator for theoris::Partial Breakpointap.

Wraps the non-const iterator for the (tilBegakpoinf pair container
Partial::container_type Partial_lteratorimplements a bidirectional iterator inter-
face, and additionally offers time ari8reakpoint(reference) access througime()
andbreakpoint(members.

3.23.2 Member Function Documentation

3.23.2.1 Breakpoint& Loris::Partial_Iterator::breakpoint (void) const

Breakpointaccessor.

Returns:
A const reference to thBreakpointat the position of this iterator.

3.23.2.2 Breakpoint& Loris::Partial_Iterator::operator x* (void) const

Dereference operator.

Returns:
A reference to th@reakpointat the position of this iterator.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

96 Loris Class Documentation

3.23.2.3 Partial_lterator Loris::Partial_lterator::operator++ (int)

Post-increment operator - advance the position of thetdeeand return a copy of the
iterator before it was advanced.

The int argument is unused compiler magic.

Returns:
An iterator that is a copy of this iterator before being adexh

Precondition:
The iterator must be a valid position before the end in sBarial

3.23.2.4 Partial_lterator & Loris::Partial_lterator::operator++ ()

Pre-increment operator - advance the position of the teramd return the iterator
itself.

Returns:
This iterator (reference to self).

Precondition:
The iterator must be a valid position before the end in sBarial

3.23.2.5 Partial_lterator Loris::Partial_lterator::operator— (int)

Post-decrement operator - move the position of the itefadok by one and return a
copy of the iterator before it was decremented.

The int argument is unused compiler magic.

Returns:
An iterator that is a copy of this iterator before being deweated.

Precondition:
The iterator must be a valid position after the beginningoimsPartial

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.23 Loris::Partial_Iterator Class Reference 97

3.23.2.6 Partial_lterator & Loris::Partial_lterator::operator— ()

Pre-decrement operator - move the position of the iteraok by one and return the
iterator itself.

Returns:
This iterator (reference to self).

Precondition:
The iterator must be a valid position after the beginningomePartial

3.23.2.7 Breakpointx Loris::Partial_lterator::operator — (void) const
Pointer operator.

Returns:
A pointer to theBreakpointat the position of this iterator.

3.23.2.8 double Loris::Partial_Iterator::time (void) const
Time accessor.

Returns:
The time in seconds of tHereakpointat the position of this iterator.

3.23.3 Friends And Related Function Documentation

3.23.3.1 bool operator!= (consPartial_lterator & lhs, constPartial_lterator &
rhs) [friend]

Inequality comparison operator.

Parameters:
Ihs the iterator on the left side of the operator.

rhs the iterator on the right side of the operator.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

98 Loris Class Documentation

Returns:
false if the two iterators refer to the same position in theeRartial true other-
wise.

3.23.3.2 bool operator== (consPartial_lterator & lhs, constPartial_lterator &
rhs) [friend]

Equality comparison operator.

Parameters:
Ihs the iterator on the left side of the operator.

rhs the iterator on the right side of the operator.

Returns:
true if the two iterators refer to the same position in the sRartial false other-
wise.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.24 Loris::PartialUtils::PartialMutator Class Referen ce 99

3.24 Loris::PartialUtils::PartialMutator Class Refer-
ence

PartialMutatoris an abstract base class fartial mutators, functors that operate on
Partials according to a time-varying envelope.

#include <Partial Uils.h>

Inheritance diagram for Loris::PartialUtils::Partialkator::

Loris::PartialUtils::PartialMutator

i
[|

| Loris::PartiaIUtiIs::AmplitudeScaIe|r | Loris::PartiaIUtiIs::BandwidthScale*r

Public Member Functions

» PartialMutator(double x)

Construct a nevPartialMutator from a constant mutation factor.

PartialMutator(const Envelope &e)

Construct a newPartialMutator from an Envelope representing a time-varying muta-
tion factor.

PartialMutator(constPartialMutator&rhs)

Construct a newPartialMutator that is a copy of another.

* virtual ~PartialMutator(void)

Destroy thisPartialMutator, deleting its Envelope.

 PartialMutato& operator=constPartialMutator&rhs)

Make thisPartialMutator a duplicate of another one.

« virtual void operator()Partial&p) const =0

Function call operator: apply a mutation factor to the syfed Partial.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

100 Loris Class Documentation

3.24.1 Detailed Description
PartialMutatoris an abstract base class f@artial mutators, functors that operate on
Partials according to a time-varying envelope.

The base class manages a polymorphic Envelope instancerinties the time-
varying mutation parameters.

Invariant:
env is a non-zero pointer to a valid instance of a class defiram the abstract
class Envelope.

3.24.2 Member Function Documentation

3.24.2.1 virtual void Loris::PartialUtils::PartialMuta tor::operator() (Partial &
p) const [pure virtual]

Function call operator: apply a mutation factor to the sfietPartial

Derived classes must implement this member.

Implemented in Loris::PartialUtils::AmplitudeScaler and
Loris::PartialUtils::BandwidthScaler

3.24.2.2 PartialMutator & Loris::PartialUtils::PartialMutator::operator=
(constPartialMutator & rhs)

Make thisPartialMutatora duplicate of another one.

Parameters:
rhs is thePartialMutatorto copy.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.25 Loris::Resampler Class Reference 101

3.25 Loris::Resampler Class Reference

ClassResamplerepresents an algorithm for resampliRgrtial envelopes at regular
time intervals.

#i ncl ude <Resanpl er. h>

Public Member Functions

» Resamplefdouble samplelnterval)
Construct a newResampleusing the specified sampling interval.

* void resamplgPartial&p) const

is performed in-place.

* void operator()Partial&p) const

Function call operator: same as resample(p).

 templatectypename Iter void resampl€lter begin, Iter end) const

Resample all Partials in the specified (half-open) rangegishis Resampler’s stored
sampling interval, so that the Breakpoints in tRartial envelopes will all lie on a
common temporal grid.

» templatectypename Ites void operator()Iter begin, Iter end) const

Function call operator: same as resample(begin, end).

Static Public Member Functions

 templatectypename Iter void resample(lter begin, Iter end, double sample-
Interval)

Static member that constructs an instance and applies itsecmence of Partials.

3.25.1 Detailed Description

ClassResamplerepresents an algorithm for resampliRgrtial envelopes at regular
time intervals.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

102 Loris Class Documentation

Resampling makes the envelope data more suitable for egeh@s SDIF data, for
example) with other applications that cannot process ramt{guously-distributed)
reassigned data. Resampling will often greatly reduceitteecf the data (by greatly
reducing the number of Breakpoints in the Partials) withadwersely affecting the
quality of the reconstruction.

3.25.2 Constructor & Destructor Documentation

3.25.2.1 Loris::Resampler::Resampler (doublesamplelnterva) [explicit]

Construct a neviresampleusing the specified sampling interval.

Parameters:
samplelntervalis the resampling interval in secon@seakpointata is computed
at integer multiples of samplelnterval seconds.

Exceptions:
InvalidArgument if samplelnterval is not positive.

3.25.3 Member Function Documentation

3.25.3.1 templatectypename lter> void Loris::Resampler::resample (lter
begin Iter end doublesampleinterva) [stati c]

Static member that constructs an instance and applies geqaence of Partials.

Construct &Resampleusing the specified resampling interval, and use it to chiazene
a sequence of Partials.

Parameters:
begin is the beginning of a sequence of Partials to resample.

end is the end of a sequence of Partials to resample.

samplelntervalis the resampling interval in secon@seakpointata is computed
at integer multiples of samplelnterval seconds.

Exceptions:
InvalidArgument if samplelnterval is not positive.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.25 Loris::Resampler Class Reference 103

If compiled with NO_TEMPLATE_MEMBERS defined, then begindaend must be
PartialList::iterators, otherwise they can be any typetefators over a sequence of
Partials.

3.25.3.2 templatectypename Iter> void Loris::Resampler::resample (lter
begin Iter end) const

Resample all Partials in the specified (half-open) rangegufiis Resampler’s stored
sampling interval, so that the Breakpoints in tRartial envelopes will all lie on a
common temporal grid.

The Breakpointtimes in the resampleRartial will comprise a contiguous sequence
of integer multiples of the sampling interval, beginninglwihe multiple nearest to
the Partial’s start time and ending with the multiple netteshe Partial’s end time.
Resampling is performed in-place.

Parameters:
begin is the beginning of the range of Partials to resample

end is (one-past) the end of the range of Partials to resample

If compiled with NO_TEMPLATE_MEMBERS defined, then begindaend must be
PartialList::iterators, otherwise they can be any typetefators over a sequence of
Partials.

3.25.3.3 void Loris::Resampler::resample Partial & p) const
is performed in-place.

Parameters:
p is thePartialto resample

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

104 Loris Class Documentation

3.26 Loris::RuntimeError Class Reference

Class of exceptions thrown when an unanticipated runtim® & encountered.
#i ncl ude <Exception. h>

Inheritance diagram for Loris::RuntimeError:;

| Loris::Exception |

T

| Loris::RuntimeError |

T

| Loris::FiIeIOExceptiori

Public Member Functions

» RuntimeError(const std::string &str, const std::string &where="")
string automatically using __FILE__and __LINE__.

3.26.1 Detailed Description

Class of exceptions thrown when an unanticipated runtime & encountered.

3.26.2 Constructor & Destructor Documentation

3.26.2.1 Loris::RuntimeError::RuntimeError (const std: :string & str, const
std::string & where="")

string automatically using __ FILE__and __LINE__.

Parameters:
str is a string describing the exceptional condition

where is an option string describing the location in the sourceecisdm which
the exception was thrown (generated automatically by threwimacro).

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.27 Loris::Sieve Class Reference 105

3.27 Loris::Sieve Class Reference

ClassSieverepresents an algorithm for identifying channelized (SeannelizeyPar-
tials that overlap in time, and selecting the longer one poasent the channel.

#i ncl ude <Si eve. h>

Public Member Functions

* Sieve(double partialFadeTime=0.001)
Construct a newbieveusing the specified partial fade time.

 templatectypename Iter void sift (Iter sift_begin, Iter sift_end)
Sift labeled Partials on the specified half-open (STL-}t@age.

Static Public Member Functions

 templatectypename Iter void sift (Iter sift_begin, Iter sift_end, double partial-
FadeTime)

Static member that constructs an instance and applies itsecmence of Partials.

3.27.1 Detailed Description

ClassSieverepresents an algorithm for identifying channelized SbannelizerPar-
tials that overlap in time, and selecting the longer one poasent the channel.

The identification of overlap includes the time needed fati®a to fade to and from
zero amplitude in synthesis (

See also:
Synthesizer) or distillation. (
Distiller)

In some cases, the energy redistribution effected by th#leligseeDistiller) is unde-
sirable. In such cases, the partials can be sifted befoti#adion. The sifting process
in Loris identifies all the partials that would be rejectedd&onverted to noise energy)
by the distiller and assigns them a label of 0. These siftetiglcan then be identi-
fied and treated sepearately or removed altogether, or tepe passed through the
distiller unlabeled, and crossfaded in the morphing pre¢es

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

106 Loris Class Documentation

See also:
Morphe).

3.27.2 Constructor & Destructor Documentation

3.27.2.1 Loris::Sieve::Sieve (doublpartialFadeTime= 0.001) [explicit]

Construct a nevieveusing the specified partial fade time.

If unspecified, the fade time defaults to one millisecon8@Q.s).

Parameters:
partialFadeTime is the extra time (in seconds) added to each end Réduialto
accomodate the fade to and from zero amplitude. DefaulDi810(one mil-
lisecond). ThePartialfade time must be non-negative.

Exceptions:
InvalidArgument if partialFadeTime is negative.

3.27.3 Member Function Documentation

3.27.3.1 templatectypename Iter> void Loris::Sieve::sift (Iter sift_begin Iter
sift_end double partialFadeTimg [stati c]

Static member that constructs an instance and applies geqaence of Partials.

Construct &ieveusing the specifie®artialfade time (in seconds), and use it to sift a
sequence of Partials.

Parameters:
sift_begin is the beginning of the range of Partials to sift

sift_end is (one-past) the end of the range of Partials to sift

partialFadeTime is the extra time (in seconds) added to each endRduialto
accomodate the fade to and from zero amplitude. Hdugialfade time must
be non-negative.

Exceptions:
InvalidArgument if partialFadeTime is negative.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.27 Loris::Sieve Class Reference 107

If compiled with NO_TEMPLATE_MEMBERS defined, then begindaend must be
PartialList::iterators, otherwise they can be any typetefators over a sequence of
Partials.

3.27.3.2 templatectypename Iter> void Loris::Sieve::sift (Iter sift_begin Iter
sift_end

Sift labeled Partials on the specified half-open (STL-3tsd@ge.

Parameters:
sift_begin is the beginning of the range of Partials to sift

sift_end is (one-past) the end of the range of Partials to sift

If compiled with NO_TEMPLATE_MEMBERS defined, then sift die and sift_end
must be PartialList::iterators, otherwise they can be gp tof iterators over a se-
quence of Partials.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

Index

absorb

Loris::Partial,80
addNoiseEnergy

Loris::Breakpoint27
addPartial

Loris::AiffFile, 9
addPartials

Loris::AiffFile, 9
AiffFile

Loris::AiffFile, 7-9
ampFloor

Loris::Analyzer,17
amplitudeAt

Loris::Partial .80
amplitudeShape

Loris::Morpher,68
analyze

Loris::Analyzer17, 18
Analyzer

Loris::Analyzer16, 17
append

Loris::Exception48
AssertionFailure

Loris::AssertionFailure24

bandwidthAt
Loris::Partial .80
begin
Loris::FourierTransforn3
Breakpoint
Loris::Breakpoint27
breakpoint
Loris::Partial_Constlterato0
Loris::Partial_Iterator95
BreakpointEnvelope
Loris::BreakpointEnvelop&1
bwRegionWidth

Loris::Analyzer,19

channelize
Loris::Channelizer35, 36
Channelizer
Loris::Channelizer34
configure
Loris::Analyzer,19
crossfade
Loris::Morpher,68

dilate

Loris::Dilator,40, 41
Dilator

Loris::Dilator,39
distill

Loris::Distiller, 45, 46
Distiller

Loris::Distiller, 45
duration

Loris::Partial,81

end
Loris::FourierTransformg3
Loris::Partial,81
endTime
Loris::Partial,81
erase
Loris::Partial,81, 82
Exception
Loris::Exception48

fadeSrcBreakpoint
Loris::Morpher,69

fadeTgtBreakpoint
Loris::Morpher,69

FilelOException
Loris::FilelOException50

INDEX

109

findAfter
Loris::Partial 82
findNearest
Loris::Partial 83
first
Loris::Partial 83, 84
FourierTransform
Loris::FourierTransformb2
freqDrift
Loris::Analyzer,19
freqFloor
Loris::Analyzer,19
freqResolution
Loris::Analyzer,20
frequencyAt
Loris::Partial, 84

IndexOutOfBounds
Loris::IndexOutOfBound$6
initialPhase
Loris::Partial, 84
insert
Loris::BreakpointEnvelop&2
Loris::Dilator,42
Loris::Partial, 84
insertBreakpoint
Loris::BreakpointEnvelop&2
InvalidArgument
Loris::InvalidArgument57
Invaliditerator
Loris::Invalidlterator 58
InvalidObject
Loris::InvalidObject60
InvalidPartial
Loris::InvalidPartial 62

last
Loris::Partial,85

Loris::AiffFile, 5

Loris::AiffFile
addPartial9
addPartials9
AiffFile, 7-9
midiNoteNumber10
numFramesl]O
operator=10

setMidiNoteNumber10
write, 11
Loris::Analyzer,13
ampFloor,17
analyze 17, 18
Analyzer,16, 17
bwRegionWidth,19
configure,19
freqDrift, 19
freqFloor,19
freqResolution20
operator=20
setAmpFloor20
setBwRegionWidth20
setCropTime20
setFreqDrift21
setFreqFloor21
setFregResolutior?1
setHopTime21
setSidelobelLeveR?2
setWindowWidth 22
sidelobelLevel?22
windowWidth,22
Loris::AssertionFailure24
Loris::AssertionFailure
AssertionFailure24
Loris::Breakpoint26
addNoiseEnergy7
Breakpoint27
setAmplitude 28
setBandwidth28
setFrequency28
setPhase28
Loris::BreakpointEnvelop&0
Loris::BreakpointEnvelope
BreakpointEnvelope31
insert,32
insertBreakpoint32
valueAt,32
Loris::Channelizer33
channelize35, 36
Channelizer34
operator=36
Loris::Dilator, 38
dilate,40, 41
Dilator, 39

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

110 INDEX
insert,42 morphBreakpoints70
operator()42, 43 Morpher,67
warpTime 43 morphPartial70

Loris::Distiller, 44 morphSrcBreakpoini 1
distill, 45, 46 morphTgtBreakpoinf/1
Distiller, 45 operator=,/2
operator()46 setAmplitudeShapé&,2

Loris::Exception47 setMinBreakpointGap/2
append48 setSourceReferencelLabéB
Exception48 setTargetReferencelLab&B
str,48 sourceReferencelLab&l3
what,49 targetReferenceLabél3

Loris::FilelOException50 Loris::Partial, 75

Loris::FilelOException absorb80
FilelOException50 amplitudeAt,80

Loris::FourierTransfornb1 bandwidthAt,80

Loris::FourierTransform duration,81
begin,53 end,81
end,53 endTime 81
FourierTransform52 erase8l, 82
operator=54 findAfter, 82
operator[],54 findNearest83
size,55 first, 83, 84
transform 55 frequencyAt84

Loris::IndexOutOfBound$6 initialPhaseB4

Loris::IndexOutOfBounds insert,84
IndexOutOfBounds; 6 last,85

Loris::InvalidArgument57 operator=85

Loris::InvalidArgument parametersAt35
InvalidArgument57 Partial, 79

Loris::Invaliditerator 58 phaseAt36

Loris::Invaliditerator ShortestSafeFadeTim&7
Invaliditerator,58 size,86

Loris::InvalidObject60 split, 87

Loris::InvalidObject startTime 87

InvalidObject,60
Loris::InvalidPartial 62
Loris::InvalidPartial

InvalidPartial 62
Loris::Morpher,64

amplitudeShape&8

crossfade68
fadeSrcBreakpoin§9
fadeTgtBreakpoin9
minBreakpointGap;9
morph,69

Loris::Partial_Constlterato89
Loris::Partial_Constlterator

breakpoint90
operator, 91
operator!=93
operator++91
operator-92
operator>, 92
operator==93
Partial_Constlteratog0
time, 92

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

INDEX

111

Loris::Partial_Iterator94

breakpoint95

operatorx, 95

operator!=97

operator++95, 96

operator-96

operators>, 97

operator==98

time, 97
Loris::PartialUtils::AmplitudeScaler,

12
Loris::PartialUtils::BandwidthScaler,
25

Loris::PartialUtils::Cropper37
Loris::PartialUtils::PartialMutatoQ9
Loris::PartialUtils::PartialMutator

operator(),100

operator=100
Loris::Resamplerl01

resample102 103

Resampler102
Loris::RuntimeError104
Loris::RuntimeError

RuntimeError,104
Loris::Sieve, 105

Sieve,106

sift, 106 107

midiNoteNumber
Loris::AiffFile, 10
minBreakpointGap
Loris::Morpher,69
morph
Loris::Morpher,69
morphBreakpoints
Loris::Morpher,70
Morpher
Loris::Morpher 67
morphPartial
Loris::Morpher,70
morphSrcBreakpoint
Loris::Morpher,71
morphTgtBreakpoint
Loris::Morpher,71

numFrames

Loris::AiffFile, 10

operatorx
Loris::Partial_Constlteratog1
Loris::Partial_Iterator95

operator!=
Loris::Partial_Constlterato3
Loris::Partial_Iterator97

operator()
Loris::Dilator,42, 43
Loris::Distiller, 46
Loris::PartialUtils::Partial-

Mutator,100

operator++
Loris::Partial_Constlteratog1
Loris::Partial_lterator95, 96

operator—
Loris::Partial_Constlteratog?2
Loris::Partial_Iterator96

operator>
Loris::Partial_Constlterato?2
Loris::Partial_Iterator97

operator=
Loris::AiffFile, 10
Loris::Analyzer,20
Loris::Channelizer36
Loris::FourierTransforng4
Loris::Morpher,72
Loris::Partial,85
Loris::PartialUtils::Partial-

Mutator,100

operator==
Loris::Partial_Constlteratog3
Loris::Partial_Iterator98

operator|]
Loris::FourierTransfornb4

parametersAt
Loris::Partial 85
Partial
Loris::Partial,79
Partial_Constlterator
Loris::Partial_Constlterato®0
phaseAt
Loris::Partial,86

resample

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

112

INDEX

Loris::Resampler]02 103
Resampler

Loris::Resamplerl02
RuntimeError

Loris::RuntimeError104

setAmpFloor
Loris::Analyzer,20
setAmplitude
Loris::Breakpoint28
setAmplitudeShape
Loris::Morpher,72
setBandwidth
Loris::Breakpoint28
setBwRegionWidth
Loris::Analyzer,20
setCropTime
Loris::Analyzer,20
setFreqDrift
Loris::Analyzer,21
setFregFloor
Loris::Analyzer,21
setFregResolution
Loris::Analyzer,21
setFrequency
Loris::Breakpoint28
setHopTime
Loris::Analyzer,21
setMidiNoteNumber
Loris::AiffFile, 10
setMinBreakpointGap
Loris::Morpher,72
setPhase
Loris::Breakpoint28
setSidelobeLevel
Loris::Analyzer,22
setSourceReferencelLabel
Loris::Morpher,73
setTargetReferencelLabel
Loris::Morpher,73
setWindowWidth
Loris::Analyzer,22
ShortestSafeFadeTime
Loris::Partial 87
sidelobeLevel
Loris::Analyzer,22

Sieve
Loris::Sieve,106
sift
Loris::Sieve,106, 107
size
Loris::FourierTransformg5
Loris::Partial,86
sourceReferencelLabel
Loris::Morpher,73
split
Loris::Partial 87
startTime
Loris::Partial,87
str
Loris::Exception48

targetReferencelLabel
Loris::Morpher,73

time
Loris::Partial_Constlterato$?2
Loris::Partial_Iterator97

transform
Loris::FourierTransforng5

valueAt
Loris::BreakpointEnvelop&2

warpTime
Loris::Dilator,43
what
Loris::Exception49
windowWidth
Loris::Analyzer,22
write
Loris::AiffFile, 11

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

	Loris Hierarchical Index
	Loris Class Hierarchy

	Loris Class Index
	Loris Class List

	Loris Class Documentation
	Loris::AiffFile Class Reference
	Loris::PartialUtils::AmplitudeScaler Class Reference
	Loris::Analyzer Class Reference
	Loris::AssertionFailure Class Reference
	Loris::PartialUtils::BandwidthScaler Class Reference
	Loris::Breakpoint Class Reference
	Loris::BreakpointEnvelope Class Reference
	Loris::Channelizer Class Reference
	Loris::PartialUtils::Cropper Class Reference
	Loris::Dilator Class Reference
	Loris::Distiller Class Reference
	Loris::Exception Class Reference
	Loris::FileIOException Class Reference
	Loris::FourierTransform Class Reference
	Loris::IndexOutOfBounds Class Reference
	Loris::InvalidArgument Class Reference
	Loris::InvalidIterator Class Reference
	Loris::InvalidObject Class Reference
	Loris::InvalidPartial Class Reference
	Loris::Morpher Class Reference
	Loris::Partial Class Reference
	Loris::Partial_ConstIterator Class Reference
	Loris::Partial_Iterator Class Reference
	Loris::PartialUtils::PartialMutator Class Reference
	Loris::Resampler Class Reference
	Loris::RuntimeError Class Reference
	Loris::Sieve Class Reference

