
Loris Reference Manual
1.3

Generated by Doxygen 1.3.4

Thu Apr 7 22:49:00 2005

Contents

1 Loris Hierarchical Index 1

1.1 Loris Class Hierarchy. 1

2 Loris Class Index 3

2.1 Loris Class List. 3

3 Loris Class Documentation 5

3.1 Loris::AiffFile Class Reference. 5

3.2 Loris::PartialUtils::AmplitudeScaler Class Reference 12

3.3 Loris::Analyzer Class Reference. 13

3.4 Loris::AssertionFailure Class Reference. 24

3.5 Loris::PartialUtils::BandwidthScaler Class Reference 25

3.6 Loris::Breakpoint Class Reference. 26

3.7 Loris::BreakpointEnvelope Class Reference. 30

3.8 Loris::Channelizer Class Reference. 33

3.9 Loris::PartialUtils::Cropper Class Reference. 37

3.10 Loris::Dilator Class Reference. 38

3.11 Loris::Distiller Class Reference. 44

3.12 Loris::Exception Class Reference. 47

3.13 Loris::FileIOException Class Reference. 50

3.14 Loris::FourierTransform Class Reference. 51

3.15 Loris::IndexOutOfBounds Class Reference. 56

3.16 Loris::InvalidArgument Class Reference. 57

ii CONTENTS

3.17 Loris::InvalidIterator Class Reference. 58

3.18 Loris::InvalidObject Class Reference. 60

3.19 Loris::InvalidPartial Class Reference. 62

3.20 Loris::Morpher Class Reference. 64

3.21 Loris::Partial Class Reference. 75

3.22 Loris::Partial_ConstIterator Class Reference. 89

3.23 Loris::Partial_Iterator Class Reference. 94

3.24 Loris::PartialUtils::PartialMutator Class Reference 99

3.25 Loris::Resampler Class Reference. 101

3.26 Loris::RuntimeError Class Reference. 104

3.27 Loris::Sieve Class Reference. 105

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

Chapter 1

Loris Hierarchical Index

1.1 Loris Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

Loris::AiffFile . 5
Loris::Analyzer .13
Loris::Breakpoint .26
Loris::BreakpointEnvelope .. 30
Loris::Channelizer .33
Loris::PartialUtils::Cropper 37
Loris::Dilator .38
Loris::Distiller .44
Loris::Exception .47

Loris::AssertionFailure .24
Loris::IndexOutOfBounds .56
Loris::InvalidArgument .57
Loris::InvalidObject .60

Loris::InvalidIterator .58
Loris::InvalidPartial .62

Loris::RuntimeError .104
Loris::FileIOException .50

Loris::FourierTransform .51
Loris::Morpher .64
Loris::Partial .75
Loris::Partial_ConstIterator 89
Loris::Partial_Iterator .. . 94
Loris::PartialUtils::PartialMutator 99

Loris::PartialUtils::AmplitudeScaler 12
Loris::PartialUtils::BandwidthScaler 25

2 Loris Hierarchical Index

Loris::Resampler .101
Loris::Sieve .105

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

Chapter 2

Loris Class Index

2.1 Loris Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

Loris::AiffFile (ClassAiffFile represents sample data in a AIFF-format sam-
ples file, and manages file I/O and sample conversion)5

Loris::PartialUtils::AmplitudeScaler(Scale the amplitude of the specified
Partialaccording to an envelope representing a time-varying am-
plitude scale value) .12

Loris::Analyzer(ClassAnalyzerrepresents a configuration of parameters for
performing Reassigned Bandwidth-Enhanced Additive Analysis of
sampled sounds) .13

Loris::AssertionFailure(Class of exceptions thrown when an assertion (usu-
ally representing an invariant condition, and usually detected by the
Assert macro) is violated) .24

Loris::PartialUtils::BandwidthScaler(Scale the bandwidth of the specified
Partialaccording to an envelope representing a time-varying band-
width scale value) .25

Loris::Breakpoint(ClassBreakpointrepresents a single breakpoint in the
Partialparameter (frequency, amplitude, bandwidth) envelope) . .. 26

Loris::BreakpointEnvelope(A BreakpointEnveloperepresents a linear seg-
ment breakpoint function with infinite extension at each end(that
is, evalutaing the envelope past either end of the breakpoint func-
tion yields the value at the nearest end point)) 30

Loris::Channelizer(ClassChannelizerrepresents an algorithm for automatic
labeling of a sequence of Partials)33

Loris::PartialUtils::Cropper(Trim aPartialby removing Breakpoints outside
a specified time span) .37

4 Loris Class Index

Loris::Dilator (ClassDilator represents an algorithm for non-uniformly ex-
panding and contracting thePartialparameter envelopes according
to the initial and target (desired) times of temporal features) 38

Loris::Distiller (Class Distiller represents an algorithm for "distilling" a
group of Partials that logically represent a single component into
a singlePartial) .44

Loris::Exception(Exceptionis a generic exception class for reporting excep-
tional circumstances in Loris) .47

Loris::FileIOException(Class of exceptions thrown when file input or output
fails) .50

Loris::FourierTransform(FourierTransformprovides a simplified interface
to the FFTW library (www.fftw.org))51

Loris::IndexOutOfBounds(Class of exceptions thrown when a subscriptable
object is accessed with an index that is out of range) 56

Loris::InvalidArgument(Class of exceptions thrown when a function argu-
ment is found to be invalid) .57

Loris::InvalidIterator(Class of exceptions thrown when an Iterator is found
to be badly configured or otherwise invalid)58

Loris::InvalidObject(Class of exceptions thrown when an object is found to
be badly configured or otherwise invalid)60

Loris::InvalidPartial(Class of exceptions thrown when aPartialis found to
be badly configured or otherwise invalid)62

Loris::Morpher(ClassMorpherperforms sound morphing andPartialparam-
eter envelope interpolation according to a trio of frequency, ampli-
tude, and bandwidth morphing functions, described by Envelopes
) .64

Loris::Partial(An instance of classPartialrepresents a single component in
the reassigned bandwidth-enhanced additive model) 75

Loris::Partial_ConstIterator(Const iterator for theLoris::Partial Breakpoint
map) .89

Loris::Partial_Iterator(Non-const iterator for theLoris::Partial Breakpoint
map) .94

Loris::PartialUtils::PartialMutator(PartialMutatoris an abstract base class
for Partialmutators, functors that operate on Partials according to a
time-varying envelope) .99

Loris::Resampler(ClassResamplerrepresents an algorithm for resampling
Partialenvelopes at regular time intervals)101

Loris::RuntimeError(Class of exceptions thrown when an unanticipated run-
time error is encountered) .104

Loris::Sieve(ClassSieverepresents an algorithm for identifying channelized
(seeChannelizer) Partials that overlap in time, and selecting the
longer one to represent the channel)105

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

Chapter 3

Loris Class Documentation

3.1 Loris::AiffFile Class Reference

ClassAiffFile represents sample data in a AIFF-format samples file, and manages file
I/O and sample conversion.

#include <AiffFile.h>

Public Types

• typedef std::vector< double> samples_type

The type of the sample storage in anAiffFile.

• typedef samples_type::size_typesize_type

The type of all size parameters forAiffFile.

• typedef std::vector< Marker> markers_type

The type of AIFF marker storage in anAiffFile.

Public Member Functions

• AiffFile (const std::string &filename)

Initialize an instance ofAiffFile by importing sample data from the file having the
specified filename or path.

6 Loris Class Documentation

• template<typename Iter> AiffFile (Iter begin_partials, Iter end_partials, double
samplerate, double fadeTime=.001)

Initialize an instance ofAiffFile with samples rendered from a sequnence of Partials.

• AiffFile (double samplerate,size_typenumFrames=0)

Initialize an instance ofAiffFile having the specified sample rate, preallocating num-
Frames samples, initialized to zero.

• AiffFile (const double∗buffer,size_typebufferlength, double samplerate)

Initialize an instance ofAiffFile from a buffer of sample data, with the specified sample
rate.

• AiffFile (const std::vector< double> &vec, double samplerate)

Initialize an instance ofAiffFile from a vector of sample data, with the specified sam-
ple rate.

• AiffFile (constAiffFile &other)

Initialize this andAiffFile that is an exact copy, having all the same sample data, as
anotherAiffFile.

• AiffFile & operator=(constAiffFile &rhs)

Assignment operator: change thisAiffFile to be an exact copy of the specifiedAiffFile,
rhs, that is, having the same sample data.

• markers_type& markers(void)

Return a reference to the Marker (seeMarker.h) container for thisAiffFile.

• constmarkers_type& markers(void) const

Return a const reference to the Marker (seeMarker.h) container for thisAiffFile.

• doublemidiNoteNumber(void) const

Return the fractional MIDI note number assigned to thisAiffFile.

• size_type numFrames(void) const

Return the number of sample frames represented in thisAiffFile.

• doublesampleRate(void) const

Return the sampling freqency in Hz for the sample data in thisAiffFile.

• samples_type& samples(void)

Return a reference (or const reference) to the vector containing the floating-point
sample data for thisAiffFile.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.1 Loris::AiffFile Class Reference 7

• constsamples_type& samples(void) const

Return a const reference (or const reference) to the vector containing the floating-
point sample data for thisAiffFile.

• void addPartial(constLoris::Partial&p, double fadeTime=.001)

Render the specifiedPartial using the (optionally) specifiedPartial fade time, and
accumulate the resulting samples into the sample vector forthis AiffFile.

• template<typename Iter> voidaddPartials(Iter begin_partials, Iter end_partials,
double fadeTime=.001)

Accumulate samples rendered from a sequence of Partials.

• void setMidiNoteNumber(double nn)

Set the fractional MIDI note number assigned to thisAiffFile.

• void write (const std::string &filename, unsigned int bps=16)

Export the sample data represented by thisAiffFile to the file having the specified
filename or path.

3.1.1 Detailed Description

ClassAiffFile represents sample data in a AIFF-format samples file, and manages file
I/O and sample conversion.

Since the sound analysis and synthesis algorithms in Loris and the reassigned
bandwidth-enhanced representation are monaural,AiffFile manages only monaural
(single channel) AIFF-format samples files.

3.1.2 Constructor & Destructor Documentation

3.1.2.1 Loris::AiffFile::AiffFile (const std::string & filename) [explicit]

Initialize an instance ofAiffFile by importing sample data from the file having the
specified filename or path.

Parameters:
filename is the name or path of an AIFF samples file

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

8 Loris Class Documentation

3.1.2.2 template<typename Iter> Loris::AiffFile::AiffFile (Iter begin_partials,
Iter end_partials, doublesamplerate, double fadeTime= .001)

Initialize an instance ofAiffFile with samples rendered from a sequnence of Partials.

The Partials in the specified half-open (STL-style) range are rendered at the specified
sample rate, using the (optionally) specifiedPartialfade time (seeSynthesizer.hfor an
examplanation of fade time).

Parameters:
begin_partials is the beginning of a sequence of Partials

end_partials is (one-past) the end of a sequence of Partials

samplerateis the rate at which Partials are rendered

fadeTime is thePartialfade time for rendering the Partials on the specified range.
If unspecified, the default fade time is 1 ms.

If compiled with NO_TEMPLATE_MEMBERS defined, this member accepts only
PartialList::const_iterator arguments.

3.1.2.3 Loris::AiffFile::AiffFile (double samplerate, size_typenumFrames= 0)
[explicit]

Initialize an instance ofAiffFile having the specified sample rate, preallocating num-
Frames samples, initialized to zero.

Parameters:
samplerateis the rate at which Partials are rendered

numFrames is the initial number of (zero) samples. If unspecified, no samples
are preallocated.

3.1.2.4 Loris::AiffFile::AiffFile (const double ∗ buffer, size_typebufferlength,
double samplerate)

Initialize an instance ofAiffFile from a buffer of sample data, with the specified sample
rate.

Parameters:
buffer is a pointer to a buffer of floating point samples.

bufferlength is the number of samples in the buffer.

samplerateis the sample rate of the samples in the buffer.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.1 Loris::AiffFile Class Reference 9

3.1.2.5 Loris::AiffFile::AiffFile (const std::vector < double > & vec, double
samplerate)

Initialize an instance ofAiffFile from a vector of sample data, with the specified sample
rate.

Parameters:
vec is a vector of floating point samples.

samplerateis the sample rate of the samples in the vector.

3.1.2.6 Loris::AiffFile::AiffFile (const AiffFile & other)

Initialize this andAiffFile that is an exact copy, having all the same sample data, as
anotherAiffFile .

Parameters:
other is theAiffFile to copy

3.1.3 Member Function Documentation

3.1.3.1 void Loris::AiffFile::addPartial (const Loris::Partial & p, double
fadeTime= .001)

Render the specifiedPartialusing the (optionally) specifiedPartialfade time, and ac-
cumulate the resulting samples into the sample vector for this AiffFile .

Parameters:
p is the partial to render into thisAiffFile

fadeTime is thePartialfade time for rendering the Partials on the specified range.
If unspecified, the default fade time is 1 ms.

3.1.3.2 template<typename Iter> void Loris::AiffFile::addPartials (Iter
begin_partials, Iter end_partials, double fadeTime= .001)

Accumulate samples rendered from a sequence of Partials.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

10 Loris Class Documentation

The Partials in the specified half-open (STL-style) range are rendered at this AiffFile’s
sample rate, using the (optionally) specifiedPartialfade time (seeSynthesizer.hfor an
examplanation of fade time).

Parameters:
begin_partials is the beginning of a sequence of Partials

end_partials is (one-past) the end of a sequence of Partials

fadeTime is thePartialfade time for rendering the Partials on the specified range.
If unspecified, the default fade time is 1 ms.

If compiled with NO_TEMPLATE_MEMBERS defined, this member accepts only
PartialList::const_iterator arguments.

3.1.3.3 double Loris::AiffFile::midiNoteNumber (void) const

Return the fractional MIDI note number assigned to thisAiffFile .

If the sound has no definable pitch, note number 60.0 is used.

3.1.3.4 size_typeLoris::AiffFile::numFrames (void) const

Return the number of sample frames represented in thisAiffFile .

A sample frame contains one sample per channel for a single sample interval (e.g.
mono and stereo samples files having a sample rate of 44100 Hz both have 44100
sample frames per second of audio samples).

3.1.3.5 AiffFile & Loris::AiffFile::operator= (const AiffFile & rhs)

Assignment operator: change thisAiffFile to be an exact copy of the specifiedAiffFile ,
rhs, that is, having the same sample data.

Parameters:
rhs is theAiffFile to replicate

3.1.3.6 void Loris::AiffFile::setMidiNoteNumber (doubl enn)

Set the fractional MIDI note number assigned to thisAiffFile .

If the sound has no definable pitch, use note number 60.0 (the default).

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.1 Loris::AiffFile Class Reference 11

Parameters:
nn is a fractional MIDI note number, 60 is middle C.

3.1.3.7 void Loris::AiffFile::write (const std::string & filename, unsigned int
bps= 16)

Export the sample data represented by thisAiffFile to the file having the specified
filename or path.

Export signed integer samples of the specified size, in bits (8, 16, 24, or 32).

Parameters:
filename is the name or path of the AIFF samples file to be created or overwritten.

bps is the number of bits per sample to store in the samples file (8,16, 24, or 32).If
unspeicified, 16 bits

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

12 Loris Class Documentation

3.2 Loris::PartialUtils::AmplitudeScaler Class Refer-
ence

Scale the amplitude of the specifiedPartial according to an envelope representing a
time-varying amplitude scale value.

#include <PartialUtils.h>

Inheritance diagram for Loris::PartialUtils::AmplitudeScaler::

Loris::PartialUtils::AmplitudeScaler

Loris::PartialUtils::PartialMutator

Public Member Functions

• AmplitudeScaler(double x)

Construct a newAmplitudeScalerfrom a constant scale factor.

• AmplitudeScaler(const Envelope &e)

Construct a newAmplitudeScalerfrom an Envelope representing a time-varying scale
factor.

• void operator()(Partial&p) const

Function call operator: apply a scale factor to the specifiedPartial.

3.2.1 Detailed Description

Scale the amplitude of the specifiedPartial according to an envelope representing a
time-varying amplitude scale value.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.3 Loris::Analyzer Class Reference 13

3.3 Loris::Analyzer Class Reference

ClassAnalyzer represents a configuration of parameters for performing Reassigned
Bandwidth-Enhanced Additive Analysis of sampled sounds.

#include <Analyzer.h>

Public Member Functions

• Analyzer(double resolutionHz)

Construct a newAnalyzerconfigured with the given frequency resolution (minimum
instantaneous frequency difference between Partials).

• Analyzer(double resolutionHz, double windowWidthHz)

Construct a newAnalyzerconfigured with the given frequency resolution (minimum
instantaneous frequency difference between Partials) andanalysis window width
(main lobe, zero-to-zero).

• Analyzer(constAnalyzer&other)

Construct a newAnalyzer having identical parameter configuration to another
Analyzer.

• ∼Analyzer(void)

Destroy thisAnalyzer.

• Analyzer& operator=(constAnalyzer&rhs)

Construct a newAnalyzer having identical parameter configuration to another
Analyzer.

• void configure(double resolutionHz, double windowWidthHz)

Configure thisAnalyzerwith the given frequency resolution (minimum instantaneous
frequency difference between Partials) and analysis window width (main lobe, zero-
to-zero, in Hz).

• void analyze(const std::vector< double> &vec, double srate)

Analyze a vector of (mono) samples at the given sample rate (in Hz) and append the
extracted Partials to Analyzer’s PartialList (std::list of Partials).

• void analyze(const double∗bufBegin, const double∗bufEnd, double srate)

Analyze a range of (mono) samples at the given sample rate (inHz) and collect the
resulting Partials.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

14 Loris Class Documentation

• void analyze(const std::vector< double> &vec, double srate, const Envelope
&reference)

Analyze a vector of (mono) samples at the given sample rate (in Hz) and append the
extracted Partials to Analyzer’s PartialList (std::list of Partials).

• void analyze(const double∗bufBegin, const double∗bufEnd, double srate, const
Envelope &reference)

Analyze a range of (mono) samples at the given sample rate (inHz) and append the
extracted Partials to Analyzer’s PartialList (std::list of Partials).

• doubleampFloor(void) const

Return the amplitude floor (lowest detected spectral amplitude), in (negative) dB, for
thisAnalyzer.

• boolassociateBandwidth(void) const

Return true if thisAnalyzeris configured to peform bandwidth association to dis-
tribute noise energy among extracted Partials, and false ifnoise energy will be col-
lected in noise Partials, labeled -1 in this Analyzer’s PartialList.

• doublebwRegionWidth(void) const

Return the width (in Hz) of the Bandwidth Association regions used by thisAnalyzer.

• doublecropTime(void) const

Return the crop time (maximum temporal displacement of a time- frequency data point
from the time-domain center of the analysis window, beyond which data points are
considered "unreliable") for thisAnalyzer.

• doublefreqDrift (void) const

Return the maximum allowable frequency difference betweenconsecutive Breakpoints
in a Partial envelope for thisAnalyzer.

• doublefreqFloor(void) const

Return the frequency floor (minimum instantaneousPartial frequency), in Hz, for this
Analyzer.

• doublefreqResolution(void) const

Return the frequency resolution (minimum instantaneous frequency difference be-
tween Partials) for thisAnalyzer.

• doublehopTime(void) const

Return the hop time (which corresponds approximately to theaverage density of
Partial envelopeBreakpointdata) for thisAnalyzer.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.3 Loris::Analyzer Class Reference 15

• doublesidelobeLevel(void) const

Return the sidelobe attenutation level for the Kaiser analysis window in positive dB.

• doublewindowWidth(void) const

Return the frequency-domain main lobe width (measured between zero-crossings) of
the analysis window used by thisAnalyzer.

• void setAmpFloor(double x)

Set the amplitude floor (lowest detected spectral amplitude), in (negative) dB, for this
Analyzer.

• void setBwRegionWidth(double x)

Set the width (in Hz) of the Bandwidth Association regions used by thisAnalyzer.

• void setCropTime(double x)

Set the crop time (maximum temporal displacement of a time- frequency data point
from the time-domain center of the analysis window, beyond which data points are
considered "unreliable") for thisAnalyzer.

• void setFreqDrift(double x)

Set the maximum allowable frequency difference between consecutive Breakpoints in
a Partial envelope for thisAnalyzer.

• void setFreqFloor(double x)

Set the frequency floor (minimum instantaneousPartial frequency), in Hz, for this
Analyzer.

• void setFreqResolution(double x)

Set the frequency resolution (minimum instantaneous frequency difference between
Partials) for thisAnalyzer.

• void setHopTime(double x)

Set the hop time (which corresponds approximately to the average density ofPartial
envelopeBreakpointdata) for thisAnalyzer.

• void setSidelobeLevel(double x)

Set the sidelobe attenutation level for the Kaiser analysiswindow in positive dB.

• void setWindowWidth(double x)

Set the frequency-domain main lobe width (measured betweenzero-crossings) of the
analysis window used by thisAnalyzer.

• PartialList & partials(void)

Return a mutable reference to this Analyzer’s list of analyzed Partials.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

16 Loris Class Documentation

• const PartialList &partials(void) const

Return an immutable (const) reference to this Analyzer’s list of analyzed Partials.

3.3.1 Detailed Description

ClassAnalyzer represents a configuration of parameters for performing Reassigned
Bandwidth-Enhanced Additive Analysis of sampled sounds.

The analysis process yields a collection of Partials, each having a trio of syn-
chronous, non-uniformly- sampled breakpoint envelopes representing the time-varying
frequency, amplitude, and noisiness of a single bandwidth-enhanced sinusoid. These
Partials are accumulated in theAnalyzer.

The core analysis parameter is the frequency resolution, the minimum instantaneous
frequency spacing between partials. All other parameters are initially configured ac-
cording to this parameter (and the analysis window width, ifspecified). Subsequent
parameter mutations are independent.

For more information about Reassigned Bandwidth-EnhancedAnalysis and the Re-
assigned Bandwidth-Enhanced Additive Sound Model, refer to the Loris website:
www.cerlsoundgroup.org/Loris/.

3.3.2 Constructor & Destructor Documentation

3.3.2.1 Loris::Analyzer::Analyzer (double resolutionHz) [explicit]

Construct a newAnalyzerconfigured with the given frequency resolution (minimum
instantaneous frequency difference between Partials).

All other Analyzerparameters are computed from the specified frequency resolution.

Parameters:
resolutionHz is the frequency resolution in Hz.

3.3.2.2 Loris::Analyzer::Analyzer (double resolutionHz, double
windowWidthHz)

Construct a newAnalyzerconfigured with the given frequency resolution (minimum
instantaneous frequency difference between Partials) andanalysis window width (main

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.3 Loris::Analyzer Class Reference 17

lobe, zero-to-zero).

All other Analyzerparameters are computed from the specified resolution and window
width.

Parameters:
resolutionHz is the frequency resolution in Hz.

windowWidthHz is the main lobe width of the Kaiser analysis window in Hz.

3.3.2.3 Loris::Analyzer::Analyzer (constAnalyzer & other)

Construct a newAnalyzer having identical parameter configuration to another
Analyzer.

The list of collected Partials is not copied.

Parameters:
other is theAnalyzerto copy.

3.3.3 Member Function Documentation

3.3.3.1 double Loris::Analyzer::ampFloor (void) const

Return the amplitude floor (lowest detected spectral amplitude), in (negative) dB, for
thisAnalyzer.

3.3.3.2 void Loris::Analyzer::analyze (const double∗ bufBegin, const double∗
bufEnd, doublesrate, const Envelope &reference)

Analyze a range of (mono) samples at the given sample rate (inHz) and append the
extracted Partials to Analyzer’s PartialList (std::list of Partials).

Use the specified envelope as a frequency reference forPartialtracking.

Parameters:
bufBegin is a pointer to a buffer of floating point samples

bufEnd is (one-past) the end of a buffer of floating point samples

srate is the sample rate of the samples in the buffer

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

18 Loris Class Documentation

reference is an Envelope having the approximate frequency contour expected of
the resulting Partials.

3.3.3.3 void Loris::Analyzer::analyze (const std::vector< double > & vec,
double srate, const Envelope &reference)

Analyze a vector of (mono) samples at the given sample rate (in Hz) and append the
extracted Partials to Analyzer’s PartialList (std::list of Partials).

Use the specified envelope as a frequency reference forPartialtracking.

Parameters:
vec is a vector of floating point samples

srate is the sample rate of the samples in the vector

reference is an Envelope having the approximate frequency contour expected of
the resulting Partials.

3.3.3.4 void Loris::Analyzer::analyze (const double∗ bufBegin, const double∗
bufEnd, doublesrate)

Analyze a range of (mono) samples at the given sample rate (inHz) and collect the
resulting Partials.

Parameters:
bufBegin is a pointer to a buffer of floating point samples

bufEnd is (one-past) the end of a buffer of floating point samples

srate is the sample rate of the samples in the buffer

3.3.3.5 void Loris::Analyzer::analyze (const std::vector< double > & vec,
double srate)

Analyze a vector of (mono) samples at the given sample rate (in Hz) and append the
extracted Partials to Analyzer’s PartialList (std::list of Partials).

Parameters:
vec is a vector of floating point samples

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.3 Loris::Analyzer Class Reference 19

srate is the sample rate of the samples in the vector

3.3.3.6 double Loris::Analyzer::bwRegionWidth (void) const

Return the width (in Hz) of the Bandwidth Association regions used by thisAnalyzer.

If zero, bandwidth enhancement is disabled.

3.3.3.7 void Loris::Analyzer::configure (doubleresolutionHz, double
windowWidthHz)

Configure thisAnalyzerwith the given frequency resolution (minimum instantaneous
frequency difference between Partials) and analysis window width (main lobe, zero-to-
zero, in Hz).

All other Analyzerparameters are (re-)computed from the frequency resolution and
window width.

Parameters:
resolutionHz is the frequency resolution in Hz.

windowWidthHz is the main lobe width of the Kaiser analysis window in Hz.

There are three categories of analysis parameters:

• the resolution, and params that are usually related to (or identical to) the resolu-
tion (frequency floor and drift)

• the window width and params that are usually related to (or identical to) the
window width (hop and crop times)

• independent parameters (bw region width and amp floor)

3.3.3.8 double Loris::Analyzer::freqDrift (void) const

Return the maximum allowable frequency difference betweenconsecutive Breakpoints
in a Partialenvelope for thisAnalyzer.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

20 Loris Class Documentation

3.3.3.9 double Loris::Analyzer::freqFloor (void) const

Return the frequency floor (minimum instantaneousPartialfrequency), in Hz, for this
Analyzer.

3.3.3.10 double Loris::Analyzer::freqResolution (void)const

Return the frequency resolution (minimum instantaneous frequency difference between
Partials) for thisAnalyzer.

3.3.3.11 Analyzer& Loris::Analyzer::operator= (const Analyzer & rhs)

Construct a newAnalyzer having identical parameter configuration to another
Analyzer.

The list of collected Partials is not copied.

Parameters:
rhs is theAnalyzerto copy.

3.3.3.12 void Loris::Analyzer::setAmpFloor (doublex)

Set the amplitude floor (lowest detected spectral amplitude), in (negative) dB, for this
Analyzer.

Parameters:
x is the new value of this parameter.

3.3.3.13 void Loris::Analyzer::setBwRegionWidth (doublex)

Set the width (in Hz) of the Bandwidth Association regions used by thisAnalyzer.

If zero, bandwidth enhancement is disabled.

Parameters:
x is the new value of this parameter.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.3 Loris::Analyzer Class Reference 21

3.3.3.14 void Loris::Analyzer::setCropTime (doublex)

Set the crop time (maximum temporal displacement of a time- frequency data point
from the time-domain center of the analysis window, beyond which data points are
considered "unreliable") for thisAnalyzer.

Parameters:
x is the new value of this parameter.

3.3.3.15 void Loris::Analyzer::setFreqDrift (double x)

Set the maximum allowable frequency difference between consecutive Breakpoints in
aPartialenvelope for thisAnalyzer.

Parameters:
x is the new value of this parameter.

3.3.3.16 void Loris::Analyzer::setFreqFloor (doublex)

Set the frequency floor (minimum instantaneousPartial frequency), in Hz, for this
Analyzer.

Parameters:
x is the new value of this parameter.

3.3.3.17 void Loris::Analyzer::setFreqResolution (double x)

Set the frequency resolution (minimum instantaneous frequency difference between
Partials) for thisAnalyzer.

(Does not cause other parameters to be recomputed.)

Parameters:
x is the new value of this parameter.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

22 Loris Class Documentation

3.3.3.18 void Loris::Analyzer::setHopTime (doublex)

Set the hop time (which corresponds approximately to the average density ofPartial
envelopeBreakpointdata) for thisAnalyzer.

Parameters:
x is the new value of this parameter.

3.3.3.19 void Loris::Analyzer::setSidelobeLevel (double x)

Set the sidelobe attenutation level for the Kaiser analysiswindow in positive dB.

More negative numbers (e.g. -90) give very good sidelobe rejection but cause the
window to be longer in time. Less negative numbers raise the level of the sidelobes,
increasing the likelihood of frequency-domain interference, but allow the window to
be shorter in time.

Parameters:
x is the new value of this parameter.

3.3.3.20 void Loris::Analyzer::setWindowWidth (double x)

Set the frequency-domain main lobe width (measured betweenzero-crossings) of the
analysis window used by thisAnalyzer.

Parameters:
x is the new value of this parameter.

3.3.3.21 double Loris::Analyzer::sidelobeLevel (void) const

Return the sidelobe attenutation level for the Kaiser analysis window in positive dB.

Larger numbers (e.g. 90) give very good sidelobe rejection but cause the window to be
longer in time. Smaller numbers (like 60) raise the level of the sidelobes, increasing
the likelihood of frequency-domain interference, but allow the window to be shorter in
time.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.3 Loris::Analyzer Class Reference 23

3.3.3.22 double Loris::Analyzer::windowWidth (void) const

Return the frequency-domain main lobe width (measured between zero-crossings) of
the analysis window used by thisAnalyzer.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

24 Loris Class Documentation

3.4 Loris::AssertionFailure Class Reference

Class of exceptions thrown when an assertion (usually representing an invariant condi-
tion, and usually detected by the Assert macro) is violated.

#include <Exception.h>

Inheritance diagram for Loris::AssertionFailure::

Loris::AssertionFailure

Loris::Exception

Public Member Functions

• AssertionFailure(const std::string &str, const std::string &where="")

string automatically using __FILE__ and __LINE__.

3.4.1 Detailed Description

Class of exceptions thrown when an assertion (usually representing an invariant condi-
tion, and usually detected by the Assert macro) is violated.

3.4.2 Constructor & Destructor Documentation

3.4.2.1 Loris::AssertionFailure::AssertionFailure (const std::string & str, const
std::string & where= "")

string automatically using __FILE__ and __LINE__.

Parameters:
str is a string describing the exceptional condition

where is an option string describing the location in the source code from which
the exception was thrown (generated automatically by the Throw macro).

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.5 Loris::PartialUtils::BandwidthScaler Class Reference 25

3.5 Loris::PartialUtils::BandwidthScaler Class Refer-
ence

Scale the bandwidth of the specifiedPartialaccording to an envelope representing a
time-varying bandwidth scale value.

#include <PartialUtils.h>

Inheritance diagram for Loris::PartialUtils::BandwidthScaler::

Loris::PartialUtils::BandwidthScaler

Loris::PartialUtils::PartialMutator

Public Member Functions

• BandwidthScaler(double x)

Construct a newBandwidthScalerfrom a constant scale factor.

• BandwidthScaler(const Envelope &e)

Construct a newBandwidthScalerfrom an Envelope representing a time-varying
scale factor.

• void operator()(Partial&p) const

Function call operator: apply a scale factor to the specifiedPartial.

3.5.1 Detailed Description

Scale the bandwidth of the specifiedPartialaccording to an envelope representing a
time-varying bandwidth scale value.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

26 Loris Class Documentation

3.6 Loris::Breakpoint Class Reference

ClassBreakpointrepresents a single breakpoint in thePartialparameter (frequency,
amplitude, bandwidth) envelope.

#include <Breakpoint.h>

Public Member Functions

• Breakpoint(void)

Construct a newBreakpointwith all parameters initialized to 0 (needed for STL con-
tainability).

• Breakpoint(double f, double a, double b, double p=0.)

Construct a newBreakpointwith the specified parameters.

• doubleamplitude(void) const

Return the amplitude of thisBreakpoint.

• doublebandwidth(void) const

Return the bandwidth (noisiness) coefficient of thisBreakpoint.

• doublefrequency(void) const

Return the frequency of thisBreakpoint.

• doublephase(void) const

Return the phase of thisBreakpoint.

• void setAmplitude(double x)

Set the amplitude of thisBreakpoint.

• void setBandwidth(double x)

Set the bandwidth (noisiness) coefficient of thisBreakpoint.

• void setFrequency(double x)

Set the frequency of thisBreakpoint.

• void setPhase(double x)

Set the phase of thisBreakpoint.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.6 Loris::Breakpoint Class Reference 27

• void addNoiseEnergy(double enoise)

Add noise (bandwidth) energy to thisBreakpointby computing new amplitude and
bandwidth values.

3.6.1 Detailed Description

ClassBreakpointrepresents a single breakpoint in thePartial parameter (frequency,
amplitude, bandwidth) envelope.

Instantaneous phase is also stored, but is only used at the onset of a partial, or when it
makes a transition from zero to nonzero amplitude.

Loris Partials represent reassigned bandwidth-enhanced model components. APartial
consists of a chain of Breakpoints describing the time-varying frequency, amplitude,
and bandwidth (noisiness) of the component. For more information about Reas-
signed Bandwidth-Enhanced Analysis and the Reassigned Bandwidth-Enhanced Ad-
ditive Sound Model, refer to the Loris website: www.cerlsoundgroup.org/Loris/.

Breakpointis a leaf class, do not subclass.

3.6.2 Constructor & Destructor Documentation

3.6.2.1 Loris::Breakpoint::Breakpoint (double f, doublea, doubleb, doublep =
0.)

Construct a newBreakpointwith the specified parameters.

Parameters:
f is the intial frequency.

a is the initial amplitude.

b is the initial bandwidth.

p is the initial phase, if specified (if unspecified, 0 is assumed).

3.6.3 Member Function Documentation

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

28 Loris Class Documentation

3.6.3.1 void Loris::Breakpoint::addNoiseEnergy (doubleenoise)

Add noise (bandwidth) energy to thisBreakpointby computing new amplitude and
bandwidth values.

enoise may be negative, but noise energy cannot be removed (negative energy added)
in excess of the current noise energy.

Parameters:
enoise is the amount of noise energy to add to thisBreakpoint.

3.6.3.2 void Loris::Breakpoint::setAmplitude (double x)

Set the amplitude of thisBreakpoint.

Parameters:
x is the new amplitude

3.6.3.3 void Loris::Breakpoint::setBandwidth (doublex)

Set the bandwidth (noisiness) coefficient of thisBreakpoint.

Parameters:
x is the new bandwidth

3.6.3.4 void Loris::Breakpoint::setFrequency (doublex)

Set the frequency of thisBreakpoint.

Parameters:
x is the new frequency.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.6 Loris::Breakpoint Class Reference 29

3.6.3.5 void Loris::Breakpoint::setPhase (doublex)

Set the phase of thisBreakpoint.

Parameters:
x is the new phase.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

30 Loris Class Documentation

3.7 Loris::BreakpointEnvelope Class Reference

A BreakpointEnveloperepresents a linear segment breakpoint function with infinite
extension at each end (that is, evalutaing the envelope pasteither end of the breakpoint
function yields the value at the nearest end point).

#include <BreakpointEnvelope.h>

Public Member Functions

• BreakpointEnvelope(void)

Construct a newBreakpointEnvelopehaving no breakpoints (and an implicit value of
0 everywhere).

• BreakpointEnvelope(double initialValue)

Construct and return a newBreakpointEnvelopehaving a single breakpoint at 0 (and
an implicit value everywhere) of initialValue.

• virtual BreakpointEnvelope∗ clone(void) const

Return an exact copy of thisBreakpointEnvelope(polymorphic copy, following the
Prototype pattern).

• virtual doublevalueAt(double t) const

Return the linearly-interpolated value of thisBreakpointEnvelopeat the specified
time.

• void insert(double time, double value)

Insert a breakpoint representing the specified (time, value) pair into this
BreakpointEnvelope.

• void insertBreakpoint(double time, double value)

Insert a breakpoint representing the specified (time, value) pair into this
BreakpointEnvelope.

3.7.1 Detailed Description

A BreakpointEnveloperepresents a linear segment breakpoint function with infinite
extension at each end (that is, evalutaing the envelope pasteither end of the breakpoint
function yields the value at the nearest end point).

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.7 Loris::BreakpointEnvelope Class Reference 31

BreakpointEnvelopeimplements the Envelope interface, described by the abstract class
Envelope.

BreakpointEnvelopeinherits the types

• size_type

• value_type

• iterator

• const_iterator

and the member functions

• size_type size(void) const

• bool empty(void) const

• iterator begin(void)

• const_iterator begin(void) const

• iterator end(void)

• const_iterator end(void) const

from std::map< double, double>.

3.7.2 Constructor & Destructor Documentation

3.7.2.1 Loris::BreakpointEnvelope::BreakpointEnvelope (void)

Construct a newBreakpointEnvelopehaving no breakpoints (and an implicit value of
0 everywhere).

3.7.2.2 Loris::BreakpointEnvelope::BreakpointEnvelope (doubleinitialValue)
[explicit]

Construct and return a newBreakpointEnvelopehaving a single breakpoint at 0 (and
an implicit value everywhere) of initialValue.

Parameters:
initialValue is the value of thisBreakpointEnvelopeat time 0.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

32 Loris Class Documentation

3.7.3 Member Function Documentation

3.7.3.1 void Loris::BreakpointEnvelope::insert (doubletime, doublevalue)

Insert a breakpoint representing the specified (time, value) pair into this
BreakpointEnvelope.

If there is already a breakpoint at the specified time, it willbe replaced with the new
breakpoint.

Parameters:
time is the time at which to insert a new breakpoint

value is the value of the new breakpoint

3.7.3.2 void Loris::BreakpointEnvelope::insertBreakpoint (double time, double
value)

Insert a breakpoint representing the specified (time, value) pair into this
BreakpointEnvelope.

Same as insert, retained for backwards-compatibility.

3.7.3.3 virtual double Loris::BreakpointEnvelope::valueAt (double t) const
[virtual]

Return the linearly-interpolated value of thisBreakpointEnvelopeat the specified time.

Parameters:
t is the time at which to evaluate thisBreakpointEnvelope.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.8 Loris::Channelizer Class Reference 33

3.8 Loris::Channelizer Class Reference

ClassChannelizerrepresents an algorithm for automatic labeling of a sequence of Par-
tials.

#include <Channelizer.h>

Public Member Functions

• Channelizer(const Envelope &refChanFreq, int refChanLabel)
Exceptions:

InvalidArgument if refChanLabel is not positive.

• Channelizer(constChannelizer&other)

Construct a newChannelizerthat is an exact copy of another.

• Channelizer& operator=(constChannelizer&rhs)

Assignment operator: make thisChannelizeran exact copy of another.

• ∼Channelizer(void)

Destroy thisChannelizer.

• void channelize(Partial&partial) const

Label a Partial with the number of the frequency channel containing the greatest
portion of its (the Partial’s) energy.

• template<typename Iter> void channelize(Iter begin, Iter end) const

Assign eachPartial in the specified half-open (STL-style) range the label correspond-
ing to the frequency channel containing the greatest portion of its (the Partial’s) en-
ergy.

• template<typename Iter> void operator()(Iter begin, Iter end) const

Function call operator: same aschannelize().

Static Public Member Functions

• template<typename Iter> void channelize(Iter begin, Iter end, const Envelope
&refChanFreq, int refChanLabel)

Static member that constructs an instance and applies it to asequence of Partials.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

34 Loris Class Documentation

3.8.1 Detailed Description

ClassChannelizerrepresents an algorithm for automatic labeling of a sequence of Par-
tials.

Partials must be labeled in preparation for morphing (seeMorpher) to establish corre-
spondences between Partials in the morph source and target sounds.

Channelized partials are labeled according to their adherence to a harmonic frequency
structure with a time-varying fundamental frequency. The frequency spectrum is par-
titioned into non-overlapping channels having time-varying center frequencies that are
harmonic (integer) multiples of a specified reference frequency envelope, and each
channel is identified by a unique label equal to its harmonic number. EachPartial is
assigned the label corresponding to the channel containingthe greatest portion of its
(the Partial’s) energy.

A reference frequency Envelope for channelization and the channel number to which
it corresponds (1 for an Envelope that tracks thePartialat the fundamental frequency)
must be specified. The reference Envelope can be constructedexplcitly, point by point
(using, for example, theBreakpointEnvelopeclass), or constructed automatically using
the FrequencyReference class.

Channelizeris a leaf class, do not subclass.

3.8.2 Constructor & Destructor Documentation

3.8.2.1 Loris::Channelizer::Channelizer (const Envelope & refChanFreq, int
refChanLabel)

Exceptions:
InvalidArgument if refChanLabel is not positive.

Parameters:
refChanFreq is an Envelope representing the center frequency of a channel.

refChanLabel is the corresponding channel number (i.e. 1 if refChanFreq is the
lowest-frequency channel, and all other channels are harmonics of refChan-
Freq, or 2 if refChanFreq tracks the second harmonic, etc.).

3.8.2.2 Loris::Channelizer::Channelizer (constChannelizer& other)

Construct a newChannelizerthat is an exact copy of another.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.8 Loris::Channelizer Class Reference 35

The copy represents the same set of frequency channels, constructed from the same
reference Envelope and channel number.

Parameters:
other is theChannelizerto copy

3.8.3 Member Function Documentation

3.8.3.1 template<typename Iter> void Loris::Channelizer::channelize (Iter
begin, Iter end, const Envelope &refChanFreq, int refChanLabel)
[static]

Static member that constructs an instance and applies it to asequence of Partials.

Construct aChannelizerusing the specified Envelope and reference label, and use it to
channelize a sequence of Partials.

Parameters:
begin is the beginning of a sequence of Partials to channelize.

end is the end of a sequence of Partials to channelize.

refChanFreq is an Envelope representing the center frequency of a channel.

refChanLabel is the corresponding channel number (i.e. 1 if refChanFreq is the
lowest-frequency channel, and all other channels are harmonics of refChan-
Freq, or 2 if refChanFreq tracks the second harmonic, etc.).

Exceptions:
InvalidArgument if refChanLabel is not positive.

If compiled with NO_TEMPLATE_MEMBERS defined, then begin and end must be
PartialList::iterators, otherwise they can be any type of iterators over a sequence of
Partials.

3.8.3.2 template<typename Iter> void Loris::Channelizer::channelize (Iter
begin, Iter end) const

Assign eachPartialin the specified half-open (STL-style) range the label corresponding
to the frequency channel containing the greatest portion ofits (the Partial’s) energy.

Parameters:
begin is the beginning of the range of Partials to channelize

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

36 Loris Class Documentation

end is (one-past) the end of the range of Partials to channelize

If compiled with NO_TEMPLATE_MEMBERS defined, then begin and end must be
PartialList::iterators, otherwise they can be any type of iterators over a sequence of
Partials.

3.8.3.3 void Loris::Channelizer::channelize (Partial & partial) const

Label aPartialwith the number of the frequency channel containing the greatest portion
of its (the Partial’s) energy.

Parameters:
partial is thePartialto label.

3.8.3.4 Channelizer& Loris::Channelizer::operator= (const Channelizer& rhs)

Assignment operator: make thisChannelizeran exact copy of another.

ThisChannelizeris made to represent the same set of frequency channels, constructed
from the same reference Envelope and channel number as rhs.

Parameters:
rhs is theChannelizerto copy

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.9 Loris::PartialUtils::Cropper Class Reference 37

3.9 Loris::PartialUtils::Cropper Class Reference

Trim a Partialby removing Breakpoints outside a specified time span.

#include <PartialUtils.h>

3.9.1 Detailed Description

Trim a Partialby removing Breakpoints outside a specified time span.

Insert aBreakpointat the boundary when cropping occurs.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

38 Loris Class Documentation

3.10 Loris::Dilator Class Reference

ClassDilator represents an algorithm for non-uniformly expanding and contracting
the Partialparameter envelopes according to the initial and target (desired) times of
temporal features.

#include <Dilator.h>

Public Member Functions

• Dilator (void)

Construct a newDilator with no time points.

• template<typename Iter1, typename Iter2> Dilator (Iter1 ibegin, Iter1 iend,
Iter2 tbegin)

Construct a newDilator using a range of initial time points and a range of target
(desired) time points.

• void insert(double i, double t)

Insert a pair of initial and target time points.

• void dilate(Partial&p) const

Replace thePartial envelope with a new envelope having the same Breakpoints at
times computed to align temporal features in the sorted sequence of initial time points
with their counterparts the sorted sequence of target time points.

• void operator()(Partial&p) const

Function call operator: same as dilate(Partial & p).

• void dilate(Marker &m) const

Compute a new time for the specified Marker usingwarpTime(), exactly asPartial
Breakpointtimes are recomputed.

• void operator()(Marker &m) const

Function call operator: same as dilate(Marker & m).

• template<typename Iter> void dilate(Iter dilate_begin, Iter dilate_end) const

Non-uniformly expand and contract the parameter envelopesof the eachPartial in the
specified half-open range according to this Dilator’s stored initial and target (desired)
times.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.10 Loris::Dilator Class Reference 39

• template<typename Iter> void operator()(Iter dilate_begin, Iter dilate_end)
const

Function call operator: same as dilate(Iter dilate_begin,Iter dilate_end).

• doublewarpTime(double currentTime) const

Return the dilated time value corresponding to the specifiedinitial time.

Static Public Member Functions

• template<typename PartialsIter, typename TimeIter1, typename TimeIter2>
void dilate (PartialsIter dilate_begin, PartialsIter dilate_end, TimeIter1 ibegin,
TimeIter1 iend, TimeIter2 tbegin)

Static member that constructs an instance and applies it to asequence of Partials.

3.10.1 Detailed Description

ClassDilator represents an algorithm for non-uniformly expanding and contracting
the Partialparameter envelopes according to the initial and target (desired) times of
temporal features.

It is frequently necessary to redistribute temporal eventsin this way in preparation for
a sound morph. For example, when morphing instrument tones,it is common to align
the attack, sustain, and release portions of the source sounds by dilating or contracting
those temporal regions.

This same procedure can be applied to the Markers stored inAiffFile , SdifFile, and
SpcFile (seeMarker.h).

3.10.2 Constructor & Destructor Documentation

3.10.2.1 template<typename Iter1, typename Iter2> Loris::Dilator::Dilator
(Iter1 ibegin, Iter1 iend, Iter2 tbegin)

Construct a newDilator using a range of initial time points and a range of target (de-
sired) time points.

The client must ensure that the target range has at least as many elements as the initial
range.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

40 Loris Class Documentation

Parameters:
ibegin is the beginning of a sequence of initial, or source, time points.

iend is (one-past) the end of a sequence of initial, or source, time points.

tbegin is the beginning of a sequence of target time points; this sequence must be
as long as the sequence of initial time point described by ibegin and iend.

If compiled with NO_TEMPLATE_MEMBERS defined, this member accepts only
const double∗ arguments.

3.10.3 Member Function Documentation

3.10.3.1 template<typename PartialsIter, typename TimeIter1, typename
TimeIter2> void Loris::Dilator::dilate (PartialsIter dilate_begin,
PartialsIter dilate_end, TimeIter1 ibegin, TimeIter1 iend, TimeIter2
tbegin) [static]

Static member that constructs an instance and applies it to asequence of Partials.

Parameters:
dilate_begin is the beginning of a sequence of Partials to dilate.

dilate_end is (one-past) the end of a sequence of Partials to dilate.

ibegin is the beginning of a sequence of initial, or source, time points.

iend is (one-past) the end of a sequence of initial, or source, time points.

tbegin is the beginning of a sequence of target time points; this sequence must be
as long as the sequence of initial time point described by ibegin and iend.

If compiled with NO_TEMPLATE_MEMBERS defined, this member accepts only
PartialList::const_iterator arguments. Otherwise, thismember also works for se-
quences of Markers. If compiled with NO_TEMPLATE_MEMBERS defined, this
member accepts only const double∗ arguments for the times, otherwise, any iterator
will do..

See also:
Dilator::dilate(Partial & p) const
Dilator::dilate(Marker & m) const

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.10 Loris::Dilator Class Reference 41

3.10.3.2 template<typename Iter> void Loris::Dilator::dilate (Iter
dilate_begin, Iter dilate_end) const

Non-uniformly expand and contract the parameter envelopesof the eachPartialin the
specified half-open range according to this Dilator’s stored initial and target (desired)
times.

Parameters:
dilate_begin is the beginning of a sequence of Partials to dilate.

dilate_end is (one-past) the end of a sequence of Partials to dilate.

If compiled with NO_TEMPLATE_MEMBERS defined, this member accepts only
PartialList::const_iterator arguments. Otherwise, thismember also works for se-
quences of Markers.

See also:
Dilator::dilate(Partial & p) const
Dilator::dilate(Marker & m) const

3.10.3.3 void Loris::Dilator::dilate (Marker & m) const

Compute a new time for the specified Marker usingwarpTime(), exactly asPartial
Breakpointtimes are recomputed.

This can be used to dilate the Markers corresponding to a collection of Partials.

Parameters:
m is the Marker whose time should be recomputed.

3.10.3.4 void Loris::Dilator::dilate (Partial & p) const

Replace thePartialenvelope with a new envelope having the same Breakpoints at times
computed to align temporal features in the sorted sequence of initial time points with
their counterparts the sorted sequence of target time points.

Depending on the specification of initial and target time points, the dilatedPartialmay
have Breakpoints at times less than 0, even if the originalPartialdid not.

It is possible to have duplicate time points in either sequence. Duplicate initial time
points result in very localized stretching. Duplicate target time points result in very
localized compression.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

42 Loris Class Documentation

If all initial time points are greater than 0, then an implicit time point at 0 is assumed in
both initial and target sequences, so the onset of a sound canbe stretched without expl-
citly specifying a zero point in each vector. (This seems most intuitive, and only looks
like an inconsistency if clients are using negative time points in theirDilator, or Partials
having Breakpoints before time 0, both of which are probablyunusual circumstances.)

Parameters:
p is thePartialto dilate.

3.10.3.5 void Loris::Dilator::insert (double i, double t)

Insert a pair of initial and target time points.

Specify a pair of initial and target time points to be used by this Dilator, correspond-
ing, for example, to the initial and desired time of a particular temporal feature in an
analyzed sound.

Parameters:
i is an initial, or source, time point

t is a target time point

The time points will be sorted before they are used. If, in thesequences of initial and
target time points, there are exactly the same number of initial time points preceding
i as target time points preceding t, then time i will be warpedto time t in the dilation
process.

3.10.3.6 template<typename Iter> void Loris::Dilator::operator() (Iter
dilate_begin, Iter dilate_end) const

Function call operator: same as dilate(Iter dilate_begin,Iter dilate_end).

If compiled with NO_TEMPLATE_MEMBERS defined, this member accepts only
PartialList::const_iterator arguments. Otherwise, thismember also works for se-
quences of Markers.

See also:
Dilator::dilate(Partial & p) const
Dilator::dilate(Marker & m) const

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.10 Loris::Dilator Class Reference 43

3.10.3.7 void Loris::Dilator::operator() (Marker & m) const

Function call operator: same as dilate(Marker & m).

See also:
Dilator::dilate(Marker & m) const

3.10.3.8 void Loris::Dilator::operator() (Partial & p) const

Function call operator: same as dilate(Partial & p).

See also:
Dilator::dilate(Partial & p) const

3.10.3.9 double Loris::Dilator::warpTime (double currentTime) const

Return the dilated time value corresponding to the specifiedinitial time.

Parameters:
currentTime is a pre-dilated time.

Returns:
the dilated time corresponding to the initial time currentTime

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

44 Loris Class Documentation

3.11 Loris::Distiller Class Reference

ClassDistiller represents an algorithm for "distilling" a group of Partials that logically
represent a single component into a singlePartial.

#include <Distiller.h>

Public Member Functions

• Distiller (double partialFadeTime=0.001, double partialSilentTime=0.0001)

Construct a newDistiller using the specified fade time for gaps between Partials.

• template<typename Container> Container::iteratordistill (Container &par-
tials)

Distill labeled Partials in a collection leaving only a single Partial per non-zero label.

• template<typename Container> Container::iteratoroperator()(Container &par-
tials)

Function call operator: same as distill(PartialList & partials).

Static Public Member Functions

• template<typename Container> Container::iteratordistill (Container &partials,
double partialFadeTime, double partialSilentTime=0.0001)

Static member that constructs an instance and applies it to asequence of Partials.

3.11.1 Detailed Description

ClassDistiller represents an algorithm for "distilling" a group of Partials that logically
represent a single component into a singlePartial.

The sound morphing algorithm in Loris requires that Partials in a given source be la-
beled uniquely, that is, no two Partials can have the same label. TheDistiller en-
forces this condition. All Partials identified with a particular frequency channel (see
Channelizer), and, therefore, having a common label, are distilled intoa singlePartial,
leaving at most a singlePartialper frequency channel and label. Channels that contain
no Partials are not represented in the distilled data. Partials that are not labeled, that
is, Partials having label 0, are are "collated " into groups of non-overlapping (in time)

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.11 Loris::Distiller Class Reference 45

Partials, assigned an unused label (greater than the label associated with any frequency
channel), and fused into a singlePartialper group. "Collating" is a bit like "sifting"
but non-overlapping Partials are grouped without regard tofrequency proximity. This
algorithm produces the smallest-possible number of collated Partials. Thanks to Ulrike
Axen for providing this optimal algorithm.

Distillation modifies thePartialcontainer (a PartialList). All Partials in the distilled
range having a common label are replaced by a singlePartialin the distillation process.

3.11.2 Constructor & Destructor Documentation

3.11.2.1 Loris::Distiller::Distiller (double partialFadeTime= 0.001, double
partialSilentTime= 0.0001) [explicit]

Construct a newDistiller using the specified fade time for gaps between Partials.

When two non-overlappingPartials are distilled into a singlePartial, the distilledPartial
fades out at the end of the earlierPartialand back in again at the onset of the later one.
The fade time is the time over which these fades occur. By default, use a 1 ms fade
time. The gap time is the additional time over which aPartialfaded out must remain at
zero amplitude before it can fade back in. By default, use a gap time of one tenth of a
millisecond, to prevent a pair of arbitrarily close null Breakpoints being inserted.

Parameters:
partialFadeTime is the time (in seconds) over which Partials joined by distillation

fade to and from zero amplitude. Default is 0.001 (one millisecond).

partialSilentTime is the minimum duration (in seconds) of the silent (zero-
amplitude) gap between two Partials joined by distillation. (Default is 0.0001
(one tenth of a millisecond).

3.11.3 Member Function Documentation

3.11.3.1 template<typename Container> Container::iterator
Loris::Distiller::distill (Container & partials, doublepartialFadeTime,
double partialSilentTime= 0.0001) [static]

Static member that constructs an instance and applies it to asequence of Partials.

Construct aDistiller using default parameters, and use it to distill a sequence ofPartials.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

46 Loris Class Documentation

Postcondition:
All Partials in the collection are uniquely-labeled

Parameters:
partials is the collection of Partials to distill in-place

partialFadeTime is the time (in seconds) over which Partials joined by distillation
fade to and from zero amplitude.

partialSilentTime is the minimum duration (in seconds) of the silent (zero-
amplitude) gap between two Partials joined by distillation. (Default is 0.0001
(one tenth of a millisecond).

Returns:
the position of the end of the range of distilled Partials, which is either the end of
the collection, oor the position of the first collatedPartial, composed of unlabeled
Partials in the original collection.

If compiled with NO_TEMPLATE_MEMBERS defined, then partials must be a
PartialList, otherwise it can be any container type storingPartials that supports at least
bidirectional iterators.

3.11.3.2 template<typename Container> Container::iterator
Loris::Distiller::distill (Container & partials)

Distill labeled Partials in a collection leaving only a single Partialper non-zero label.

See also:
Distiller::distill(Container & partials)

3.11.3.3 template<typename Container> Container::iterator
Loris::Distiller::operator() (Container & partials)

Function call operator: same as distill(PartialList & partials).

See also:
Distiller::distill(Container & partials)

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.12 Loris::Exception Class Reference 47

3.12 Loris::Exception Class Reference

Exceptionis a generic exception class for reporting exceptional circumstances in Loris.

#include <Exception.h>

Inheritance diagram for Loris::Exception::

Loris::Exception

Loris::AssertionFailure Loris::IndexOutOfBounds Loris::InvalidArgument Loris::InvalidObject Loris::RuntimeError

Loris::InvalidIterator Loris::InvalidPartial Loris::FileIOException

Public Member Functions

• Exception(const std::string &str, const std::string &where="")

string automatically using __FILE__ and __LINE__.

• virtual∼Exception(void) throw ()

Destroy thisException.

• const char∗ what(void) const throw ()

C-style string (char pointer).

• Exception& append(const std::string &str)

Append the specified string to this Exception’s description, and return a reference to
this Exception.

• const std::string &str (void) const

Return a read-only refernce to this Exception’s description string.

Protected Attributes

• std::string_sbuf

string for storing the exception description

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

48 Loris Class Documentation

3.12.1 Detailed Description

Exceptionis a generic exception class for reporting exceptional circumstances in Loris.

Exceptionis derived from std:exception, and is the base for a hierarchy of derived
exception classes in Loris.

3.12.2 Constructor & Destructor Documentation

3.12.2.1 Loris::Exception::Exception (const std::string & str, const std::string
& where= "")

string automatically using __FILE__ and __LINE__.

Parameters:
str is a string describing the exceptional condition

where is an option string describing the location in the source code from which
the exception was thrown (generated automatically by the Throw macro).

3.12.3 Member Function Documentation

3.12.3.1 Exception& Loris::Exception::append (const std::string & str)

Append the specified string to this Exception’s description, and return a reference to
thisException.

Parameters:
str is text to append to the exception description

Returns:
a reference to thisException.

3.12.3.2 const std::string& Loris::Exception::str (void) const

Return a read-only refernce to this Exception’s description string.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.12 Loris::Exception Class Reference 49

Returns:
a string describing the exceptional condition

3.12.3.3 const char∗ Loris::Exception::what (void) const throw ()

C-style string (char pointer).

Overrides std::exception::what.

Returns:
a C-style string describing the exceptional condition.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

50 Loris Class Documentation

3.13 Loris::FileIOException Class Reference

Class of exceptions thrown when file input or output fails.

#include <Exception.h>

Inheritance diagram for Loris::FileIOException::

Loris::FileIOException

Loris::RuntimeError

Loris::Exception

Public Member Functions

• FileIOException(const std::string &str, const std::string &where="")

string automatically using __FILE__ and __LINE__.

3.13.1 Detailed Description

Class of exceptions thrown when file input or output fails.

3.13.2 Constructor & Destructor Documentation

3.13.2.1 Loris::FileIOException::FileIOException (const std::string & str,
const std::string & where= "")

string automatically using __FILE__ and __LINE__.

Parameters:
str is a string describing the exceptional condition

where is an option string describing the location in the source code from which
the exception was thrown (generated automatically by the Throw macro).

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.14 Loris::FourierTransform Class Reference 51

3.14 Loris::FourierTransform Class Reference

FourierTransformprovides a simplified interface to the FFTW library (www.fftw.org).

#include <FourierTransform.h>

Public Types

• typedef std::vector< std::complex< double> >::size_type size_type

An unsigned integral type large enough to represent the length of any transform.

• typedef std::vector< std::complex< double> >::iterator iterator

The type of a non-const iterator of (complex) transform samples.

• typedef std::vector< std::complex< double> >::const_iterator const_iterator

The type of a const iterator of (complex) transform samples.

Public Member Functions

• FourierTransform(size_typelen)
Exceptions:

RuntimeError if the necessary buffers cannot be allocated, or there is an error
configuring FFTW.

• FourierTransform(constFourierTransform&rhs)

Initialize a newFourierTransformthat is a copy of another, having the same size and
the same buffer contents.

• ∼FourierTransform(void)

Free the resources associated with thisFourierTransform.

• FourierTransform& operator=(constFourierTransform&rhs)

Make thisFourierTransforma copy of another, having the same size and buffer con-
tents.

• std::complex< double> & operator[](size_typeindex)

Access (read/write) a transform sample by index.

• const std::complex< double> & operator[](size_typeindex) const

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

52 Loris Class Documentation

Access (read-only) a transform sample by index.

• iterator begin(void)

Return an iterator refering to the beginning of the sequenceof complex samples in the
transform buffer.

• iterator end(void)

complex samples in the transform buffer.

• const_iterator begin(void) const

Return a const iterator refering to the beginning of the sequence of complex samples
in the transform buffer.

• const_iterator end(void) const

complex samples in the transform buffer.

• void transform(void)

Compute the Fourier transform of the samples stored in the transform buffer.

• size_type size(void) const

Return the length of the transform (in samples).

3.14.1 Detailed Description

FourierTransformprovides a simplified interface to the FFTW library (www.fftw.org).

Loris uses the FFTW library to perform efficient Fourier transforms of arbitrary length.
Clients store and access the in-place transform data as a sequence of std::complex<
double>. Samples are stored in theFourierTransforminstance using subscript or
iterator access, the transform is computed by the transformmember, and the trans-
formed samples replace the input samples, and are accessed by subscript or iterator.
FourierTransformcomputes a complex transform, so it can be used to invert a trans-
form of real samples as well. Uses the standard library complex class, which imple-
ments arithmetic operations. Does not use FFTW "wisdom" to speed up transform
computation.

3.14.2 Constructor & Destructor Documentation

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.14 Loris::FourierTransform Class Reference 53

3.14.2.1 Loris::FourierTransform::FourierTransform (c onstFourierTransform
& rhs)

Initialize a newFourierTransformthat is a copy of another, having the same size and
the same buffer contents.

Parameters:
rhs is the instance to copy

Exceptions:
RuntimeError if the necessary buffers cannot be allocated, or there is an error

configuring FFTW.

3.14.3 Member Function Documentation

3.14.3.1 const_iterator Loris::FourierTransform::begin (void) const

Return a const iterator refering to the beginning of the sequence of complex samples in
the transform buffer.

Returns:
a const iterator refering to the first position in the transform buffer.

3.14.3.2 iterator Loris::FourierTransform::begin (void)

Return an iterator refering to the beginning of the sequenceof complex samples in the
transform buffer.

Returns:
a non-const iterator refering to the first position in the transform buffer.

3.14.3.3 const_iterator Loris::FourierTransform::end (void) const

complex samples in the transform buffer.

Returns:
a const iterator refering to one past the last position in thetransform buffer.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

54 Loris Class Documentation

3.14.3.4 iterator Loris::FourierTransform::end (void)

complex samples in the transform buffer.

Returns:
a non-const iterator refering to one past the last position in the transform buffer.

3.14.3.5 FourierTransform & Loris::FourierTransform::operator= (const
FourierTransform & rhs)

Make thisFourierTransforma copy of another, having the same size and buffer con-
tents.

Parameters:
rhs is the instance to copy

Returns:
a refernce to this instance

Exceptions:
RuntimeError if the necessary buffers cannot be allocated, or there is an error

configuring FFTW.

3.14.3.6]

const std::complex< double>& Loris::FourierTransform::operator[] (size_typein-
dex) const

Access (read-only) a transform sample by index.

Use this member to fill the transform buffer before computingthe transform, and to
access the samples after computing the transform. (inlinedfor speed)

Parameters:
index is the index or rank of the complex transform sample to access. Zero is the

first position in the buffer.

Returns:
const reference to the std::complex< double> at the specified position in the
buffer.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.14 Loris::FourierTransform Class Reference 55

3.14.3.7]

std::complex< double>& Loris::FourierTransform::operator[] (size_typeindex)

Access (read/write) a transform sample by index.

Use this member to fill the transform buffer before computingthe transform, and to
access the samples after computing the transform. (inlinedfor speed)

Parameters:
index is the index or rank of the complex transform sample to access. Zero is the

first position in the buffer.

Returns:
non-const reference to the std::complex< double> at the specified position in the
buffer.

3.14.3.8 size_typeLoris::FourierTransform::size (void) const

Return the length of the transform (in samples).

Returns:
the length of the transform in samples.

3.14.3.9 void Loris::FourierTransform::transform (void)

Compute the Fourier transform of the samples stored in the transform buffer.

The samples stored in the transform buffer (accessed by index or by iterator) are re-
placed by the transformed samples, in-place.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

56 Loris Class Documentation

3.15 Loris::IndexOutOfBounds Class Reference

Class of exceptions thrown when a subscriptable object is accessed with an index that
is out of range.

#include <Exception.h>

Inheritance diagram for Loris::IndexOutOfBounds::

Loris::IndexOutOfBounds

Loris::Exception

Public Member Functions

• IndexOutOfBounds(const std::string &str, const std::string &where="")

string automatically using __FILE__ and __LINE__.

3.15.1 Detailed Description

Class of exceptions thrown when a subscriptable object is accessed with an index that
is out of range.

3.15.2 Constructor & Destructor Documentation

3.15.2.1 Loris::IndexOutOfBounds::IndexOutOfBounds (const std::string &
str, const std::string & where= "")

string automatically using __FILE__ and __LINE__.

Parameters:
str is a string describing the exceptional condition

where is an option string describing the location in the source code from which
the exception was thrown (generated automatically by the Throw macro).

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.16 Loris::InvalidArgument Class Reference 57

3.16 Loris::InvalidArgument Class Reference

Class of exceptions thrown when a function argument is foundto be invalid.

#include <Exception.h>

Inheritance diagram for Loris::InvalidArgument::

Loris::InvalidArgument

Loris::Exception

Public Member Functions

• InvalidArgument(const std::string &str, const std::string &where="")

string automatically using __FILE__ and __LINE__.

3.16.1 Detailed Description

Class of exceptions thrown when a function argument is foundto be invalid.

3.16.2 Constructor & Destructor Documentation

3.16.2.1 Loris::InvalidArgument::InvalidArgument (con st std::string & str,
const std::string & where= "")

string automatically using __FILE__ and __LINE__.

Parameters:
str is a string describing the exceptional condition

where is an option string describing the location in the source code from which
the exception was thrown (generated automatically by the Throw macro).

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

58 Loris Class Documentation

3.17 Loris::InvalidIterator Class Reference

Class of exceptions thrown when an Iterator is found to be badly configured or other-
wise invalid.

#include <Exception.h>

Inheritance diagram for Loris::InvalidIterator::

Loris::InvalidIterator

Loris::InvalidObject

Loris::Exception

Public Member Functions

• InvalidIterator(const std::string &str, const std::string &where="")

string automatically using __FILE__ and __LINE__.

3.17.1 Detailed Description

Class of exceptions thrown when an Iterator is found to be badly configured or other-
wise invalid.

3.17.2 Constructor & Destructor Documentation

3.17.2.1 Loris::InvalidIterator::InvalidIterator (con st std::string & str, const
std::string & where= "")

string automatically using __FILE__ and __LINE__.

Parameters:
str is a string describing the exceptional condition

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.17 Loris::InvalidIterator Class Reference 59

where is an option string describing the location in the source code from which
the exception was thrown (generated automatically by the Throw macro).

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

60 Loris Class Documentation

3.18 Loris::InvalidObject Class Reference

Class of exceptions thrown when an object is found to be badlyconfigured or otherwise
invalid.

#include <Exception.h>

Inheritance diagram for Loris::InvalidObject::

Loris::InvalidObject

Loris::Exception

Loris::InvalidIterator Loris::InvalidPartial

Public Member Functions

• InvalidObject(const std::string &str, const std::string &where="")

string automatically using __FILE__ and __LINE__.

3.18.1 Detailed Description

Class of exceptions thrown when an object is found to be badlyconfigured or otherwise
invalid.

3.18.2 Constructor & Destructor Documentation

3.18.2.1 Loris::InvalidObject::InvalidObject (const std::string & str, const
std::string & where= "")

string automatically using __FILE__ and __LINE__.

Parameters:
str is a string describing the exceptional condition

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.18 Loris::InvalidObject Class Reference 61

where is an option string describing the location in the source code from which
the exception was thrown (generated automatically by the Throw macro).

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

62 Loris Class Documentation

3.19 Loris::InvalidPartial Class Reference

Class of exceptions thrown when aPartialis found to be badly configured or otherwise
invalid.

#include <Partial.h>

Inheritance diagram for Loris::InvalidPartial::

Loris::InvalidPartial

Loris::InvalidObject

Loris::Exception

Public Member Functions

• InvalidPartial(const std::string &str, const std::string &where="")

string automatically using __FILE__ and __LINE__.

3.19.1 Detailed Description

Class of exceptions thrown when aPartialis found to be badly configured or otherwise
invalid.

3.19.2 Constructor & Destructor Documentation

3.19.2.1 Loris::InvalidPartial::InvalidPartial (const std::string & str, const
std::string & where= "")

string automatically using __FILE__ and __LINE__.

Parameters:
str is a string describing the exceptional condition

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.19 Loris::InvalidPartial Class Reference 63

where is an option string describing the location in the source code from which
the exception was thrown (generated automatically byt he Throw macro).

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

64 Loris Class Documentation

3.20 Loris::Morpher Class Reference

ClassMorpherperforms sound morphing andPartialparameter envelope interpolation
according to a trio of frequency, amplitude, and bandwidth morphing functions, de-
scribed by Envelopes.

#include <Morpher.h>

Public Member Functions

• Morpher(const Envelope &f)

Construct a newMorpher using the same morphing envelope for frequency, ampli-
tude, and bandwidth (noisiness).

• Morpher(const Envelope &ff, const Envelope &af, const Envelope &bwf)

Construct a newMorpherusing the specified morphing envelopes for frequency, am-
plitude, and bandwidth (noisiness).

• Morpher(constMorpher&rhs)

Construct a newMorpherthat is a duplicate of rhs.

• ∼Morpher(void)

Destroy thisMorpher.

• Morpher& operator=(constMorpher&rhs)
• Partial morphPartial(constPartial&src, constPartial&tgt, int assignLabel)

Morph a pair of Partials to yield a new morphedPartial.

• void morph(PartialList::const_iterator beginSrc, PartialList::const_iterator end-
Src, PartialList::const_iterator beginTgt, PartialList::const_iterator endTgt)

Morph two sounds (collections of Partials labeled to indicate correspondences) into
a single labeled collection of Partials.

• void crossfade(PartialList::const_iterator beginSrc, PartialList::const_iterator
endSrc, PartialList::const_iterator beginTgt, PartialList::const_iterator endTgt,
Partial::label_typelabel=0)

Crossfade Partials with no correspondences.

• Breakpoint morphBreakpoints(constBreakpoint&srcBkpt, constBreakpoint
&tgtBkpt, double time) const

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.20 Loris::Morpher Class Reference 65

Compute morphed parameter values at the specified time, using the source and target
Breakpoints (assumed to correspond exactly to the specifiedtime).

• Breakpoint morphSrcBreakpoint(const Breakpoint&bp, const Partial &tgt-
Partial, double time) const

Compute morphed parameter values at the specified time, using the sourceBreakpoint
(assumed to correspond exactly to the specified time) and thetarget Partial (whose
parameters are examined at the specified time).

• Breakpoint morphTgtBreakpoint(const Breakpoint&bp, const Partial &tgt-
Partial, double time) const

Compute morphed parameter values at the specified time, using the targetBreakpoint
(assumed to correspond exactly to the specified time) and thesourcePartial (whose
parameters are examined at the specified time).

• Breakpoint fadeSrcBreakpoint(Breakpointbp, double time) const

Compute morphed parameter values at the specified time, using the source
Breakpoint, assumed to correspond exactly to the specified time, and assuming that
there is no corresponding targetPartial, so the sourceBreakpointshould be simply
faded.

• Breakpoint fadeTgtBreakpoint(Breakpointbp, double time) const

Compute morphed parameter values at the specified time, using the targetBreakpoint,
assumed to correspond exactly to the specified time, and assuming that there is not
corresponding sourcePartial, so the targetBreakpointshould be simply faded.

• void setFrequencyFunction(const Envelope &f)

Assign a new frequency morphing envelope to thisMorpher.

• void setAmplitudeFunction(const Envelope &f)

Assign a new amplitude morphing envelope to thisMorpher.

• void setBandwidthFunction(const Envelope &f)

Assign a new bandwidth morphing envelope to thisMorpher.

• const Envelope &frequencyFunction(void) const

Return a reference to this Morpher’s frequency morphing envelope.

• const Envelope &litudeFunction(void) const

Return a reference to this Morpher’s amplitude morphing envelope.

• const Envelope &bandwidthFunction(void) const

Return a reference to this Morpher’s bandwidth morphing envelope.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

66 Loris Class Documentation

• doubleamplitudeShape(void) const

Return the shaping parameter for the amplitude moprhing function (only used in new
log-amplitude morphing).

• void setAmplitudeShape(double x)

Set the shaping parameter for the amplitude moprhing function (only used in new
log-amplitude morphing).

• doubleminBreakpointGap(void) const

Return the minimum time gap (secs) between two Breakpoints in the morphed Partials.

• void setMinBreakpointGap(double x)

Set the minimum time gap (secs) between two Breakpoints in the morphed Partials.

• Partial::label_type sourceReferenceLabel(void) const

Return the label of thePartial to be used as a referencePartial for the source sequence
in a morph of twoPartial sequences.

• Partial::label_type targetReferenceLabel(void) const

Return the label of thePartial to be used as a referencePartial for the target sequence
in a morph of twoPartial sequences.

• void setSourceReferenceLabel(Partial::label_typel)

Set the label of thePartial to be used as a referencePartial for the source sequence
in a morph of twoPartial sequences.

• void setTargetReferenceLabel(Partial::label_typel)

Set the label of thePartial to be used as a referencePartial for the target sequence in
a morph of twoPartial sequences.

• PartialList &partials(void)

Return a reference to this Morpher’s list of morphed Partials.

• const PartialList &partials(void) const

Return a const reference to this Morpher’s list of morphed Partials.

3.20.1 Detailed Description

ClassMorpherperforms sound morphing andPartialparameter envelope interpolation
according to a trio of frequency, amplitude, and bandwidth morphing functions, de-
scribed by Envelopes.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.20 Loris::Morpher Class Reference 67

Sound morphing is achieved by interpolating the time-varying frequencies, ampli-
tudes, and bandwidths of corresponding partials obtained from reassigned bandwidth-
enhanced analysis of the source and target sounds.Partial correspondences may be
established by labeling, using instances of theChannelizerandDistiller classes.

TheMorphercollects morphed Partials in a PartialList, that is accessible to clients.

For more information about sound morphing using the Reassigned
Bandwidth-Enhanced Additive Sound Model, refer to the Loris website:
www.cerlsoundgroup.org/Loris/.

Morpheris a leaf class, do not subclass.

3.20.2 Constructor & Destructor Documentation

3.20.2.1 Loris::Morpher::Morpher (const Envelope & f)

Construct a newMorpherusing the same morphing envelope for frequency, amplitude,
and bandwidth (noisiness).

Parameters:
f is the Envelope to clone for all three morphing functions.

3.20.2.2 Loris::Morpher::Morpher (const Envelope & ff , const Envelope &af,
const Envelope &bwf)

Construct a newMorpherusing the specified morphing envelopes for frequency, am-
plitude, and bandwidth (noisiness).

Parameters:
ff is the Envelope to clone for the frequency morphing function

af is the Envelope to clone for the amplitude morphing function

bwf is the Envelope to clone for the bandwidth morphing function

3.20.2.3 Loris::Morpher::Morpher (const Morpher & rhs)

Construct a newMorpherthat is a duplicate of rhs.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

68 Loris Class Documentation

Parameters:
rhs is theMorpherto duplicate

3.20.3 Member Function Documentation

3.20.3.1 double Loris::Morpher::amplitudeShape (void) const

Return the shaping parameter for the amplitude moprhing function (only used in new
log-amplitude morphing).

This shaping parameter controls the slope of the amplitude morphing function, for
values greater than 1, this function gets nearly linear (like the old amplitude morphing
function), for values much less than 1 (e.g. 1E-5) the slope is gently curved and sounds
pretty "linear", for very small values (e.g. 1E-12) the curve is very steep and sounds
un-natural because of the huge jump from zero amplitude to very small amplitude.

3.20.3.2 void Loris::Morpher::crossfade (PartialList:: const_iteratorbeginSrc,
PartialList::const_iterator endSrc, PartialList::const_iterator
beginTgt, PartialList::const_iterator endTgt, Partial::label_type label=
0)

Crossfade Partials with no correspondences.

Unlabeled Partials (having the specified label) are considered to have no correspon-
dences, so they are just faded out, and not actually morphed.Consistent with the mor-
phing behavior, crossfaded Partials are thinned, if necssary, so that no two Breakpoints
are closer in time than the minBreakpointGap.

The Partials in the first range are treated as components of the source sound, corre-
sponding to a morph function value of 0, and those in the second are treated as compo-
nents of the target sound, corresponding to a morph functionvalue of 1.

The crossfaded Partials are stored in the Morpher’s PartialList.

Parameters:
beginSrc is the beginning of the sequence of Partials corresponding to a morph

function value of 0.

endSrc is (one past) the end of the sequence of Partials corresponding to a morph
function value of 0.

beginTgt is the beginning of the sequence of Partials corresponding to a morph
function value of 1.

endTgt is (one past) the end of the sequence of Partials corresponding to a morph
function value of 1.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.20 Loris::Morpher Class Reference 69

label is the label to associate with unlabeled Partials (default is 0).

3.20.3.3 Breakpoint Loris::Morpher::fadeSrcBreakpoint (Breakpoint bp,
double time) const

Compute morphed parameter values at the specified time, using the sourceBreakpoint,
assumed to correspond exactly to the specified time, and assuming that there is no
corresponding targetPartial, so the sourceBreakpointshould be simply faded.

Parameters:
bp is theBreakpointcorresponding to a morph function value of 0.

time is the time corresponding to bp (used to evaluate the morphing functions).

Returns:
the fadedBreakpoint

3.20.3.4 Breakpoint Loris::Morpher::fadeTgtBreakpoint (Breakpoint bp,
double time) const

Compute morphed parameter values at the specified time, using the targetBreakpoint,
assumed to correspond exactly to the specified time, and assuming that there is not
corresponding sourcePartial, so the targetBreakpointshould be simply faded.

Parameters:
bp is theBreakpointcorresponding to a morph function value of 1.

time is the time corresponding to bp (used to evaluate the morphing functions).

Returns:
the fadedBreakpoint

3.20.3.5 double Loris::Morpher::minBreakpointGap (void) const

Return the minimum time gap (secs) between two Breakpoints in the morphed Partials.

Morphing two Partials can generate a thirdPartialhaving Breakpoints arbitrarily close
together in time, and this makes morphs huge. Raising this threshold limits the
Breakpointdensity in the morphed Partials. Default is 1/10 ms.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

70 Loris Class Documentation

3.20.3.6 void Loris::Morpher::morph (PartialList::cons t_iterator beginSrc,
PartialList::const_iterator endSrc, PartialList::const_iterator
beginTgt, PartialList::const_iterator endTgt)

Morph two sounds (collections of Partials labeled to indicate correspondences) into a
single labeled collection of Partials.

Unlabeled Partials (having label 0) are crossfaded. The morphed and crossfaded Par-
tials are stored in the Morpher’s PartialList.

The Partials in the first range are treated as components of the source sound, corre-
sponding to a morph function value of 0, and those in the second are treated as compo-
nents of the target sound, corresponding to a morph functionvalue of 1.

See also:
crossfade, morphPartial

Parameters:
beginSrc is the beginning of the sequence of Partials corresponding to a morph

function value of 0.

endSrc is (one past) the end of the sequence of Partials corresponding to a morph
function value of 0.

beginTgt is the beginning of the sequence of Partials corresponding to a morph
function value of 1.

endTgt is (one past) the end of the sequence of Partials corresponding to a morph
function value of 1.

3.20.3.7 Breakpoint Loris::Morpher::morphBreakpoints (const Breakpoint &
srcBkpt, constBreakpoint & tgtBkpt, double time) const

Compute morphed parameter values at the specified time, using the source and target
Breakpoints (assumed to correspond exactly to the specifiedtime).

Parameters:
srcBkpt is theBreakpointcorresponding to a morph function value of 0.

tgtBkpt is theBreakpointcorresponding to a morph function value of 1.

time is the time corresponding to srcBkpt (used to evaluate the morphing functions
and tgtPartial).

Returns:
the morphedBreakpoint

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.20 Loris::Morpher Class Reference 71

3.20.3.8 Partial Loris::Morpher::morphPartial (const Partial & src, const
Partial & tgt, int assignLabel)

Morph a pair of Partials to yield a new morphedPartial.

Dummy Partials (having no Breakpoints) don’t contribute tothe morph, except to cause
their opposite to fade out. Either (or neither) the source ortargetPartial may be a
dummyPartial(no Breakpoints), but not both. The morphedPartialhas Breakpoints
at times corresponding to everyBreakpointin both source Partials, omitting Break-
points that would be closer than the minBreakpointGap to their predecessor. The new
morphedPartialis assigned the specified label and returned.

Parameters:
src is thePartialcorresponding to a morph function value of 0, evaluated at the

specified time.

tgt is thePartialcorresponding to a morph function value of 1, evaluated at the
specified time.

assignLabel is the label assigned to the morphedPartial

Returns:
the morphedPartial

3.20.3.9 Breakpoint Loris::Morpher::morphSrcBreakpoint (const Breakpoint
& bp, constPartial & tgtPartial, double time) const

Compute morphed parameter values at the specified time, using the sourceBreakpoint
(assumed to correspond exactly to the specified time) and thetargetPartial (whose
parameters are examined at the specified time).

Precondition:
the targetPartialmay not be a dummyPartial(no Breakpoints).

Parameters:
srcBkpt is theBreakpointcorresponding to a morph function value of 0.

tgtPartial is thePartialcorresponding to a morph function value of 1, evaluated at
the specified time.

time is the time corresponding to srcBkpt (used to evaluate the morphing functions
and tgtPartial).

newpis the morphedPartialunder construction, the morphedBreakpointis added
to thisPartial.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

72 Loris Class Documentation

3.20.3.10 Breakpoint Loris::Morpher::morphTgtBreakpoint (const Breakpoint
& bp, constPartial & tgtPartial, double time) const

Compute morphed parameter values at the specified time, using the targetBreakpoint
(assumed to correspond exactly to the specified time) and thesourcePartial (whose
parameters are examined at the specified time).

Precondition:
the sourcePartialmay not be a dummyPartial(no Breakpoints).

Parameters:
tgtBkpt is theBreakpointcorresponding to a morph function value of 1.

srcPartial is thePartialcorresponding to a morph function value of 0, evaluated
at the specified time.

time is the time corresponding to srcBkpt (used to evaluate the morphing functions
and tgtPartial).

newpis the morphedPartialunder construction, the morphedBreakpointis added
to thisPartial.

3.20.3.11 Morpher & Loris::Morpher::operator= (const Morpher & rhs)

Parameters:
rhs is theMorpherto duplicate

3.20.3.12 void Loris::Morpher::setAmplitudeShape (double x)

Set the shaping parameter for the amplitude moprhing function (only used in new log-
amplitude morphing).

This shaping parameter controls the slope of the amplitude morphing function, for
values greater than 1, this function gets nearly linear (like the old amplitude morphing
function), for values much less than 1 (e.g. 1E-5) the slope is gently curved and sounds
pretty "linear", for very small values (e.g. 1E-12) the curve is very steep and sounds
un-natural because of the huge jump from zero amplitude to very small amplitude.

Parameters:
x is the new shaping parameter, it must be positive.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.20 Loris::Morpher Class Reference 73

3.20.3.13 void Loris::Morpher::setMinBreakpointGap (double x)

Set the minimum time gap (secs) between two Breakpoints in the morphed Partials.

Morphing two Partials can generate a thirdPartialhaving Breakpoints arbitrarily close
together in time, and this makes morphs huge. Raising this threshold limits the
Breakpointdensity in the morphed Partials. Default is 1/10 ms.

Parameters:
x is the new minimum gap in seconds, it must be positive

Exceptions:
InvalidArgument if the specified gap is not positive

3.20.3.14 void Loris::Morpher::setSourceReferenceLabel (Partial::label_type l)

Set the label of thePartialto be used as a referencePartialfor the source sequence in a
morph of twoPartialsequences.

The reference partial is used to compute frequencies for very low-amplitude Partials
whose frequency estimates are not considered reliable. ThereferencePartial is con-
sidered to have good frequency estimates throughout. Setting the reference label to 0
indicates that no referencePartialshould be used for the source sequence.

3.20.3.15 void Loris::Morpher::setTargetReferenceLabel (Partial::label_type l)

Set the label of thePartialto be used as a referencePartialfor the target sequence in a
morph of twoPartialsequences.

The reference partial is used to compute frequencies for very low-amplitude Partials
whose frequency estimates are not considered reliable. ThereferencePartial is con-
sidered to have good frequency estimates throughout. Setting the reference label to 0
indicates that no referencePartialshould be used for the target sequence.

3.20.3.16 Partial::label_type Loris::Morpher::sourceReferenceLabel (void)
const

Return the label of thePartialto be used as a referencePartialfor the source sequence
in a morph of twoPartialsequences.

The reference partial is used to compute frequencies for very low-amplitude Partials
whose frequency estimates are not considered reliable. ThereferencePartialis consid-
ered to have good frequency estimates throughout. The default label of 0 indicates that
no referencePartialshould be used for the source sequence.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

74 Loris Class Documentation

3.20.3.17 Partial::label_type Loris::Morpher::targetReferenceLabel (void)
const

Return the label of thePartialto be used as a referencePartialfor the target sequence
in a morph of twoPartialsequences.

The reference partial is used to compute frequencies for very low-amplitude Partials
whose frequency estimates are not considered reliable. ThereferencePartialis consid-
ered to have good frequency estimates throughout. The default label of 0 indicates that
no referencePartialshould be used for the target sequence.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.21 Loris::Partial Class Reference 75

3.21 Loris::Partial Class Reference

An instance of classPartialrepresents a single component in the reassigned bandwidth-
enhanced additive model.

#include <Partial.h>

Public Types

• typedef std::map< double,Breakpoint> container_type

underlyingBreakpointcontainer type, used by the iterator types defined below:

• typedef intlabel_type

32 bit type for labeling Partials

• typedefPartial_Iterator iterator

non-const iterator over (time,Breakpoint) pairs in thisPartial

• typedefPartial_ConstIterator const_iterator

const iterator over (time,Breakpoint) pairs in thisPartial

• typedef container_type::size_typesize_type

size type for number of Breakpoints in thisPartial

Public Member Functions

• Partial(void)

Retun a new empty (no Breakpoints)Partial.

• Partial(const_iteratorbeg,const_iteratorend)

Retun a newPartial from a half-open (const) iterator range of time-Breakpointpairs.

• Partial(constPartial&other)

Return a newPartial that is an exact copy (has an identical set of Breakpoints, at
identical times, and the same label) of anotherPartial.

• ∼Partial(void)

Destroy thisPartial.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

76 Loris Class Documentation

• Partial& operator=(constPartial&other)

Make thisPartial an exact copy (has an identical set of Breakpoints, at identical times,
and the same label) of anotherPartial.

• iterator begin(void)

Return an iterator refering to the position of the firstBreakpointin this Partial’s
envelope, orend()if there are no Breakpoints in thePartial.

• const_iterator begin(void) const

Return a const iterator refering to the position of the firstBreakpointin this Partial’s
envelope, orend()if there are no Breakpoints in thePartial.

• iterator end(void)

Return an iterator refering to the position past the lastBreakpointin this Partial’s
envelope.

• const_iterator end(void) const

Return a const iterator refering to the position past the last Breakpointin this Partial’s
envelope.

• iterator erase(iteratorbeg,iteratorend)

Breakpointremoval: erase the Breakpoints in the specified range, and return an iter-
ator referring to the position after the, erased range.

• iterator findAfter(double time)

Return an iterator refering to the insertion position for aBreakpointat the specified
time (that is, the position of the firstBreakpointat a time later than the specified time).

• const_iterator findAfter(double time) const

Return a const iterator refering to the insertion position for a Breakpointat the spec-
ified time (that is, the position of the firstBreakpointat a time later than the specified
time).

• iterator insert(double time, constBreakpoint&bp)

Breakpointinsertion: insert a copy of the specifiedBreakpointin the parameter enve-
lope at time (seconds), and return an iterator refering to the position of the inserted
Breakpoint.

• size_type size(void) const

Return the number of Breakpoints in thisPartial.

• doubleduration(void) const

Return the duration (in seconds) spanned by the Breakpointsin this Partial.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.21 Loris::Partial Class Reference 77

• doubleendTime(void) const

Return the time (in seconds) of the lastBreakpointin thisPartial.

• Breakpoint& first (void)

Return a reference to the firstBreakpointin the Partial’s envelope.

• constBreakpoint& first (void) const

Return a const reference to the firstBreakpointin the Partial’s envelope.

• doubleinitialPhase(void) const

Return the phase (in radians) of thisPartial at its start time (the phase of the first
Breakpoint).

• label_type label(void) const

Return the 32-bit label for thisPartial as an integer.

• Breakpoint& last(void)

Return a reference to the lastBreakpointin the Partial’s envelope.

• constBreakpoint& last(void) const

Return a const reference to the lastBreakpointin the Partial’s envelope.

• size_type numBreakpoints(void) const

Same assize(). Return the number of Breakpoints in thisPartial.

• doublestartTime(void) const

Return the time (in seconds) of the firstBreakpointin this Partial.

• void absorb(constPartial&other)

Absorb another Partial’s energy as noise (bandwidth), by accumulating the other’s
energy as noise energy in the portion of this Partial’s envelope that overlaps (in time)
with the other Partial’s envelope.

• void setLabel(label_typel)

Set the label for thisPartial to the specified 32-bit value.

• iterator erase(iteratorpos)

Remove theBreakpointat the position of the given iterator, invalidating the iterator.

• iterator findNearest(double time)

Return an iterator refering to the position of theBreakpointin thisPartial nearest the
specified time.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

78 Loris Class Documentation

• const_iterator findNearest(double time) const

Return a const iterator refering to the position of theBreakpointin thisPartial nearest
the specified time.

• Partial split(iteratorpos)

Break thisPartial at the specified position (iterator).

• double amplitudeAt (double time, double fadeTime=ShortestSafeFadeTime)
const

Return the interpolated amplitude of thisPartial at the specified time.

• doublebandwidthAt(double time) const

Return the interpolated bandwidth (noisiness) coefficientof thisPartial at the speci-
fied time.

• doublefrequencyAt(double time) const

Return the interpolated frequency (in Hz) of thisPartial at the specified time.

• doublephaseAt(double time) const

Return the interpolated phase (in radians) of thisPartial at the specified time.

• Breakpoint parametersAt (double time, double fade-
Time=ShortestSafeFadeTime) const

Return the interpolated parameters of thisPartial at the specified time, same as
building aBreakpointfrom the results of frequencyAt, ampitudeAt, bandwidthAt,and
phaseAt, but performs only oneBreakpointenvelope search.

Static Public Attributes

• const doubleShortestSafeFadeTime

Define the default fade time for computing amplitude at the ends of aPartial.

3.21.1 Detailed Description

An instance of classPartialrepresents a single component in the reassigned bandwidth-
enhanced additive model.

A Partialconsists of a chain of Breakpoints describing the time-varying frequency, am-
plitude, and bandwidth (or noisiness) envelopes of the component, and a 4-byte label.
The Breakpoints are non-uniformly distributed in time. Formore information about

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.21 Loris::Partial Class Reference 79

Reassigned Bandwidth-Enhanced Analysis and the Reassigned Bandwidth-Enhanced
Additive Sound Model, refer to the Loris website: www.cerlsoundgroup.org/Loris/.

The constituent time-tagged Breakpoints are accessible through Partial:iterator and
Partial::const_iteratorinterfaces. These iterator classes implement the interface for
bidirectional iterators in the STL, including pre and post-increment and decrement,
and dereferencing. Dereferencing a Partial::itertator orPartial::const_itertator yields a
reference to aBreakpoint. Additionally, these iterator classes have breakpoint() and
time() members, returning theBreakpoint(by reference) at the current iterator position
and the time (by value) corresponding to thatBreakpoint.

Partialis a leaf class, do not subclass.

Most of the implementation ofPartialdelegates to a few container-dependent members.
The following members are container-dependent, the other members are implemented
in terms of these: default construction copy (construction) operator= (assign) opera-
tor== (equivalence) size insert(pos, Breakpoint) erase(b, e) findAfter(time) begin
(const and non-const) end (const and non-const) first (constand non-const) last (const
and non-const)

3.21.2 Constructor & Destructor Documentation

3.21.2.1 Loris::Partial::Partial (const_iterator beg, const_iterator end)

Retun a newPartialfrom a half-open (const) iterator range of time-Breakpointpairs.

Parameters:
beg is the beginning of the range of time-Breakpoint pairs to insert into the new

Partial.

end is the end of the range of time-Breakpoint pairs to insert into the newPartial.

3.21.2.2 Loris::Partial::Partial (const Partial & other)

Return a newPartialthat is an exact copy (has an identical set of Breakpoints, atiden-
tical times, and the same label) of anotherPartial.

Parameters:
other is thePartialto copy.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

80 Loris Class Documentation

3.21.3 Member Function Documentation

3.21.3.1 void Loris::Partial::absorb (constPartial & other)

Absorb another Partial’s energy as noise (bandwidth), by accumulating the other’s en-
ergy as noise energy in the portion of this Partial’s envelope that overlaps (in time) with
the other Partial’s envelope.

Parameters:
other is thePartialto absorb.

3.21.3.2 double Loris::Partial::amplitudeAt (double time, double fadeTime=
ShortestSafeFadeTime) const

Return the interpolated amplitude of thisPartialat the specified time.

If non-zero fadeTime is specified, then the amplitude at the ends of thePartialis com-
puted using a linear fade. The default fadeTime is ShortestSafeFadeTime, see the defi-
nition of ShortestSafeFadeTime, above.

Parameters:
time is the time in seconds at which to evaluate thePartial.

fadeTime is the duration in seconds over whichPartialamplitudes fade at the ends.
The default value is ShortestSafeFadeTime, 1 ns.

Returns:
The amplitude of thisPartialat the specified time.

Precondition:
ThePartialmust have at least oneBreakpoint.

Exceptions:
InvalidPartial if the Partialhas no Breakpoints.

3.21.3.3 double Loris::Partial::bandwidthAt (double time) const

Return the interpolated bandwidth (noisiness) coefficientof thisPartialat the specified
time.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.21 Loris::Partial Class Reference 81

At times beyond the ends of thePartial, return the bandwidth coefficient at the nearest
envelope endpoint.

Parameters:
time is the time in seconds at which to evaluate thePartial.

Returns:
The bandwidth of thisPartialat the specified time.

Precondition:
ThePartialmust have at least oneBreakpoint.

Exceptions:
InvalidPartial if the Partialhas no Breakpoints.

3.21.3.4 double Loris::Partial::duration (void) const

Return the duration (in seconds) spanned by the Breakpointsin thisPartial.

Note that the synthesized onset time will differ, dependingon the fade time used to
synthesize thisPartial(see class Synthesizer).

3.21.3.5 const_iterator Loris::Partial::end (void) const

Return a const iterator refering to the position past the last Breakpointin this Partial’s
envelope.

The iterator returned byend()(like the iterator returned by theend()member of any
STL container) does not refer to a validBreakpoint.

3.21.3.6 iterator Loris::Partial::end (void)

Return an iterator refering to the position past the lastBreakpointin this Partial’s enve-
lope.

The iterator returned byend()(like the iterator returned by theend()member of any
STL container) does not refer to a validBreakpoint.

3.21.3.7 double Loris::Partial::endTime (void) const

Return the time (in seconds) of the lastBreakpointin thisPartial.

Note that the synthesized onset time will differ, dependingon the fade time used to
synthesize thisPartial(see class Synthesizer).

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

82 Loris Class Documentation

3.21.3.8 iterator Loris::Partial::erase (iterator pos)

Remove theBreakpointat the position of the given iterator, invalidating the iterator.

Return a iterator referring to the next valid position, or tothe end of thePartialif the
lastBreakpointis removed.

Parameters:
pos is the position of the time-Breakpoint pair to be removed.

Returns:
The position (iterator) of the time-Breakpoint pair after the one that was removed.

Postcondition:
The iterator pos is invalid.

3.21.3.9 iterator Loris::Partial::erase (iterator beg, iterator end)

Breakpointremoval: erase the Breakpoints in the specified range, and return an iterator
referring to the position after the, erased range.

Parameters:
beg is the beginning of the range of Breakpoints to erase

end is the end of the range of Breakpoints to erase

Returns:
The position of the firstBreakpointafter the range of removed Breakpoints, or
end()if the lastBreakpointin thePartialwas removed.

3.21.3.10 const_iterator Loris::Partial::findAfter (double time) const

Return a const iterator refering to the insertion position for aBreakpointat the specified
time (that is, the position of the firstBreakpointat a time later than the specified time).

Parameters:
time is the time in seconds to find

Returns:
The last position (iterator) at which aBreakpointat the specified time could be
inserted (the position of the firstBreakpointlater than time).

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.21 Loris::Partial Class Reference 83

3.21.3.11 iterator Loris::Partial::findAfter (double time)

Return an iterator refering to the insertion position for aBreakpointat the specified
time (that is, the position of the firstBreakpointat a time later than the specified time).

Parameters:
time is the time in seconds to find

Returns:
The last position (iterator) at which aBreakpointat the specified time could be
inserted (the position of the firstBreakpointlater than time).

3.21.3.12 const_iterator Loris::Partial::findNearest (double time) const

Return a const iterator refering to the position of theBreakpointin this Partialnearest
the specified time.

Parameters:
time is the time to find.

Returns:
The position (iterator) of the time-Breakpoint pair nearest (in time) to the specified
time.

3.21.3.13 iterator Loris::Partial::findNearest (double time)

Return an iterator refering to the position of theBreakpointin this Partialnearest the
specified time.

Parameters:
time is the time to find.

Returns:
The position (iterator) of the time-Breakpoint pair nearest (in time) to the specified
time.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

84 Loris Class Documentation

3.21.3.14 constBreakpoint& Loris::Partial::first (void) const

Return a const reference to the firstBreakpointin the Partial’s envelope.

Exceptions:
InvalidPartial if there are no Breakpoints.

3.21.3.15 Breakpoint& Loris::Partial::first (void)

Return a reference to the firstBreakpointin the Partial’s envelope.

Exceptions:
InvalidPartial if there are no Breakpoints.

3.21.3.16 double Loris::Partial::frequencyAt (doubletime) const

Return the interpolated frequency (in Hz) of thisPartialat the specified time.

At times beyond the ends of thePartial, return the frequency at the nearest envelope
endpoint.

Parameters:
time is the time in seconds at which to evaluate thePartial.

Returns:
The frequency of thisPartialat the specified time.

Precondition:
ThePartialmust have at least oneBreakpoint.

Exceptions:
InvalidPartial if the Partialhas no Breakpoints.

3.21.3.17 double Loris::Partial::initialPhase (void) const

Return the phase (in radians) of thisPartial at its start time (the phase of the first
Breakpoint).

Note that the initial synthesized phase will differ, depending on the fade time used to
synthesize thisPartial(see class Synthesizer).

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.21 Loris::Partial Class Reference 85

3.21.3.18 iterator Loris::Partial::insert (double time, constBreakpoint & bp)

Breakpointinsertion: insert a copy of the specifiedBreakpointin the parameter en-
velope at time (seconds), and return an iterator refering tothe position of the inserted
Breakpoint.

Parameters:
time is the time in seconds at which to insert the newBreakpoint.

bp is the newBreakpointto insert.

Returns:
the position (iterator) of the newly-inserted time-Breakpoint pair.

3.21.3.19 constBreakpoint& Loris::Partial::last (void) const

Return a const reference to the lastBreakpointin the Partial’s envelope.

Exceptions:
InvalidPartial if there are no Breakpoints.

3.21.3.20 Breakpoint& Loris::Partial::last (void)

Return a reference to the lastBreakpointin the Partial’s envelope.

Exceptions:
InvalidPartial if there are no Breakpoints.

3.21.3.21 Partial& Loris::Partial::operator= (const Partial & other)

Make thisPartialan exact copy (has an identical set of Breakpoints, at identical times,
and the same label) of anotherPartial.

Parameters:
other is thePartialto copy.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

86 Loris Class Documentation

3.21.3.22 Breakpoint Loris::Partial::parametersAt (double time, double
fadeTime= ShortestSafeFadeTime) const

Return the interpolated parameters of thisPartialat the specified time, same as building
aBreakpointfrom the results of frequencyAt, ampitudeAt, bandwidthAt,and phaseAt,
but performs only oneBreakpointenvelope search.

If non-zero fadeTime is specified, then the amplitude at the ends of thePartialis coom-
puted using a linear fade. The default fadeTime is ShortestSafeFadeTime.

Parameters:
time is the time in seconds at which to evaluate thePartial.

fadeTime is the duration in seconds over whichPartialamplitudes fade at the ends.
The default value is ShortestSafeFadeTime, 1 ns.

Returns:
A Breakpointdescribing the parameters of thisPartialat the specified time.

Precondition:
ThePartialmust have at least oneBreakpoint.

Exceptions:
InvalidPartial if the Partialhas no Breakpoints.

3.21.3.23 double Loris::Partial::phaseAt (doubletime) const

Return the interpolated phase (in radians) of thisPartialat the specified time.

At times beyond the ends of thePartial, return the extrapolated from the nearest enve-
lope endpoint (assuming constant frequency, as reported byfrequencyAt()).

Parameters:
time is the time in seconds at which to evaluate thePartial.

Returns:
The phase of thisPartialat the specified time.

Precondition:
ThePartialmust have at least oneBreakpoint.

Exceptions:
InvalidPartial if the Partialhas no Breakpoints.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.21 Loris::Partial Class Reference 87

3.21.3.24 size_typeLoris::Partial::size (void) const

Return the number of Breakpoints in thisPartial.

Returns:
The number of Breakpoints in thisPartial.

3.21.3.25 Partial Loris::Partial::split (iterator pos)

Break thisPartialat the specified position (iterator).

TheBreakpointat the specified position becomes the firstBreakpointin a newPartial.
Breakpoints at the specified position and subsequent positions are removed from this
Partialand added to the newPartial, which is returned.

Parameters:
pos is the position at which to split thisPartial.

Returns:
A new Partialconsisting of time-Breakpoint pairs beginning with pos andextend-
ing to the end of thisPartial.

Postcondition:
All positions beginning with pos and extending to the end of thisPartialhave been
removed.

3.21.3.26 double Loris::Partial::startTime (void) const

Return the time (in seconds) of the firstBreakpointin thisPartial.

Note that the synthesized onset time will differ, dependingon the fade time used to
synthesize thisPartial(see class Synthesizer).

3.21.4 Member Data Documentation

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

88 Loris Class Documentation

3.21.4.1 const doubleLoris::Partial::ShortestSafeFadeTime [static]

Define the default fade time for computing amplitude at the ends of aPartial.

Floating point round-off errors make fadeTime == 0.0 dangerous and unpredictable.
1 ns is short enough to prevent rounding errors in the least significant bit of a 48-bit
mantissa for times up to ten hours.

1 nanosecond, see Partial.C

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.22 Loris::Partial_ConstIterator Class Reference 89

3.22 Loris::Partial_ConstIterator Class Reference

Const iterator for theLoris::Partial Breakpointmap.

#include <Partial.h>

Public Member Functions

• Partial_ConstIterator(void)

Construct a new iterator referring to no position in anyPartial.

• Partial_ConstIterator(constPartial_Iterator&other)

Construct a new const iterator from a non-const iterator.

• Partial_ConstIterator& operator++()

Pre-increment operator - advance the position of the iterator and return the iterator
itself.

• Partial_ConstIterator& operator–()

Pre-decrement operator - move the position of the iterator back by one and return the
iterator itself.

• Partial_ConstIterator operator++(int)

Post-increment operator - advance the position of the iterator and return a copy of
the iterator before it was advanced.

• Partial_ConstIterator operator–(int)

Post-decrement operator - move the position of the iteratorback by one and return a
copy of the iterator before it was decremented.

• constBreakpoint& operator∗ (void) const

Dereference operator.

• constBreakpoint∗ operator→ (void) const

Pointer operator.

• constBreakpoint& breakpoint(void) const

Breakpointaccessor.

• doubletime(void) const

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

90 Loris Class Documentation

Time accessor.

Friends

• bool operator==(constPartial_ConstIterator&lhs, constPartial_ConstIterator
&rhs)

Equality comparison operator.

• bool operator!=(constPartial_ConstIterator&lhs, constPartial_ConstIterator
&rhs)

Inequality comparison operator.

3.22.1 Detailed Description

Const iterator for theLoris::Partial Breakpointmap.

Wraps the non-const iterator for the (time,Breakpoint) pair container
Partial::container_type. Partial_Iteratorimplements a bidirectional iterator inter-
face, and additionally offers time andBreakpoint(reference) access throughtime()
andbreakpoint()members.

3.22.2 Constructor & Destructor Documentation

3.22.2.1 Loris::Partial_ConstIterator::Partial_ConstIterator (const
Partial_Iterator & other)

Construct a new const iterator from a non-const iterator.

Parameters:
other a non-const iterator from which to make a read-only copy.

3.22.3 Member Function Documentation

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.22 Loris::Partial_ConstIterator Class Reference 91

3.22.3.1 constBreakpoint& Loris::Partial_ConstIterator::breakpoint (void)
const

Breakpointaccessor.

Returns:
A const reference to theBreakpointat the position of this iterator.

3.22.3.2 constBreakpoint& Loris::Partial_ConstIterator::operator ∗ (void)
const

Dereference operator.

Returns:
A const reference to theBreakpointat the position of this iterator.

3.22.3.3 Partial_ConstIterator Loris::Partial_ConstIterator::operator++ (int)

Post-increment operator - advance the position of the iterator and return a copy of the
iterator before it was advanced.

The int argument is unused compiler magic.

Returns:
An iterator that is a copy of this iterator before being advanced.

Precondition:
The iterator must be a valid position before the end in somePartial.

3.22.3.4 Partial_ConstIterator& Loris::Partial_ConstIterator::operator++ ()

Pre-increment operator - advance the position of the iterator and return the iterator
itself.

Returns:
This iterator (reference to self).

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

92 Loris Class Documentation

Precondition:
The iterator must be a valid position before the end in somePartial.

3.22.3.5 Partial_ConstIterator Loris::Partial_ConstIterator::operator– (int)

Post-decrement operator - move the position of the iteratorback by one and return a
copy of the iterator before it was decremented.

The int argument is unused compiler magic.

Returns:
An iterator that is a copy of this iterator before being decremented.

Precondition:
The iterator must be a valid position after the beginning in somePartial.

3.22.3.6 Partial_ConstIterator& Loris::Partial_ConstIterator::operator– ()

Pre-decrement operator - move the position of the iterator back by one and return the
iterator itself.

Returns:
This iterator (reference to self).

Precondition:
The iterator must be a valid position after the beginning in somePartial.

3.22.3.7 constBreakpoint∗ Loris::Partial_ConstIterator::operator → (void)
const

Pointer operator.

Returns:
A const pointer to theBreakpointat the position of this iterator.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.22 Loris::Partial_ConstIterator Class Reference 93

3.22.3.8 double Loris::Partial_ConstIterator::time (void) const

Time accessor.

Returns:
The time in seconds of theBreakpointat the position of this iterator.

3.22.4 Friends And Related Function Documentation

3.22.4.1 bool operator!= (constPartial_ConstIterator & lhs, const
Partial_ConstIterator & rhs) [friend]

Inequality comparison operator.

Parameters:
lhs the iterator on the left side of the operator.

rhs the iterator on the right side of the operator.

Returns:
false if the two iterators refer to the same position in the samePartial, true other-
wise.

3.22.4.2 bool operator== (constPartial_ConstIterator & lhs, const
Partial_ConstIterator & rhs) [friend]

Equality comparison operator.

Parameters:
lhs the iterator on the left side of the operator.

rhs the iterator on the right side of the operator.

Returns:
true if the two iterators refer to the same position in the same Partial, false other-
wise.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

94 Loris Class Documentation

3.23 Loris::Partial_Iterator Class Reference

Non-const iterator for theLoris::Partial Breakpointmap.

#include <Partial.h>

Public Member Functions

• Partial_Iterator(void)

Construct a new iterator referring to no position in anyPartial.

• Partial_Iterator& operator++()

Pre-increment operator - advance the position of the iterator and return the iterator
itself.

• Partial_Iterator& operator–()

Pre-decrement operator - move the position of the iterator back by one and return the
iterator itself.

• Partial_Iterator operator++(int)

Post-increment operator - advance the position of the iterator and return a copy of
the iterator before it was advanced.

• Partial_Iterator operator–(int)

Post-decrement operator - move the position of the iteratorback by one and return a
copy of the iterator before it was decremented.

• Breakpoint& operator∗ (void) const

Dereference operator.

• Breakpoint∗ operator→ (void) const

Pointer operator.

• Breakpoint& breakpoint(void) const

Breakpointaccessor.

• doubletime (void) const

Time accessor.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.23 Loris::Partial_Iterator Class Reference 95

Friends

• booloperator==(constPartial_Iterator&lhs, constPartial_Iterator&rhs)

Equality comparison operator.

• booloperator!=(constPartial_Iterator&lhs, constPartial_Iterator&rhs)

Inequality comparison operator.

3.23.1 Detailed Description

Non-const iterator for theLoris::Partial Breakpointmap.

Wraps the non-const iterator for the (time,Breakpoint) pair container
Partial::container_type. Partial_Iteratorimplements a bidirectional iterator inter-
face, and additionally offers time andBreakpoint(reference) access throughtime()
andbreakpoint()members.

3.23.2 Member Function Documentation

3.23.2.1 Breakpoint& Loris::Partial_Iterator::breakpoint (void) const

Breakpointaccessor.

Returns:
A const reference to theBreakpointat the position of this iterator.

3.23.2.2 Breakpoint& Loris::Partial_Iterator::operator ∗ (void) const

Dereference operator.

Returns:
A reference to theBreakpointat the position of this iterator.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

96 Loris Class Documentation

3.23.2.3 Partial_Iterator Loris::Partial_Iterator::operator++ (int)

Post-increment operator - advance the position of the iterator and return a copy of the
iterator before it was advanced.

The int argument is unused compiler magic.

Returns:
An iterator that is a copy of this iterator before being advanced.

Precondition:
The iterator must be a valid position before the end in somePartial.

3.23.2.4 Partial_Iterator & Loris::Partial_Iterator::operator++ ()

Pre-increment operator - advance the position of the iterator and return the iterator
itself.

Returns:
This iterator (reference to self).

Precondition:
The iterator must be a valid position before the end in somePartial.

3.23.2.5 Partial_Iterator Loris::Partial_Iterator::operator– (int)

Post-decrement operator - move the position of the iteratorback by one and return a
copy of the iterator before it was decremented.

The int argument is unused compiler magic.

Returns:
An iterator that is a copy of this iterator before being decremented.

Precondition:
The iterator must be a valid position after the beginning in somePartial.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.23 Loris::Partial_Iterator Class Reference 97

3.23.2.6 Partial_Iterator & Loris::Partial_Iterator::operator– ()

Pre-decrement operator - move the position of the iterator back by one and return the
iterator itself.

Returns:
This iterator (reference to self).

Precondition:
The iterator must be a valid position after the beginning in somePartial.

3.23.2.7 Breakpoint∗ Loris::Partial_Iterator::operator → (void) const

Pointer operator.

Returns:
A pointer to theBreakpointat the position of this iterator.

3.23.2.8 double Loris::Partial_Iterator::time (void) const

Time accessor.

Returns:
The time in seconds of theBreakpointat the position of this iterator.

3.23.3 Friends And Related Function Documentation

3.23.3.1 bool operator!= (constPartial_Iterator & lhs, constPartial_Iterator &
rhs) [friend]

Inequality comparison operator.

Parameters:
lhs the iterator on the left side of the operator.

rhs the iterator on the right side of the operator.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

98 Loris Class Documentation

Returns:
false if the two iterators refer to the same position in the samePartial, true other-
wise.

3.23.3.2 bool operator== (constPartial_Iterator & lhs, constPartial_Iterator &
rhs) [friend]

Equality comparison operator.

Parameters:
lhs the iterator on the left side of the operator.

rhs the iterator on the right side of the operator.

Returns:
true if the two iterators refer to the same position in the same Partial, false other-
wise.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.24 Loris::PartialUtils::PartialMutator Class Referen ce 99

3.24 Loris::PartialUtils::PartialMutator Class Refer-
ence

PartialMutatoris an abstract base class forPartialmutators, functors that operate on
Partials according to a time-varying envelope.

#include <PartialUtils.h>

Inheritance diagram for Loris::PartialUtils::PartialMutator::

Loris::PartialUtils::PartialMutator

Loris::PartialUtils::AmplitudeScaler Loris::PartialUtils::BandwidthScaler

Public Member Functions

• PartialMutator(double x)

Construct a newPartialMutator from a constant mutation factor.

• PartialMutator(const Envelope &e)

Construct a newPartialMutator from an Envelope representing a time-varying muta-
tion factor.

• PartialMutator(constPartialMutator&rhs)

Construct a newPartialMutator that is a copy of another.

• virtual∼PartialMutator(void)

Destroy thisPartialMutator, deleting its Envelope.

• PartialMutator& operator=(constPartialMutator&rhs)

Make thisPartialMutator a duplicate of another one.

• virtual voidoperator()(Partial&p) const =0

Function call operator: apply a mutation factor to the specifiedPartial.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

100 Loris Class Documentation

3.24.1 Detailed Description

PartialMutatoris an abstract base class forPartialmutators, functors that operate on
Partials according to a time-varying envelope.

The base class manages a polymorphic Envelope instance thatprovides the time-
varying mutation parameters.

Invariant:
env is a non-zero pointer to a valid instance of a class derived from the abstract
class Envelope.

3.24.2 Member Function Documentation

3.24.2.1 virtual void Loris::PartialUtils::PartialMuta tor::operator() (Partial &
p) const [pure virtual]

Function call operator: apply a mutation factor to the specifiedPartial.

Derived classes must implement this member.

Implemented in Loris::PartialUtils::AmplitudeScaler, and
Loris::PartialUtils::BandwidthScaler.

3.24.2.2 PartialMutator & Loris::PartialUtils::PartialMutator::operator=
(constPartialMutator & rhs)

Make thisPartialMutatora duplicate of another one.

Parameters:
rhs is thePartialMutatorto copy.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.25 Loris::Resampler Class Reference 101

3.25 Loris::Resampler Class Reference

ClassResamplerrepresents an algorithm for resamplingPartialenvelopes at regular
time intervals.

#include <Resampler.h>

Public Member Functions

• Resampler(double sampleInterval)

Construct a newResamplerusing the specified sampling interval.

• void resample(Partial&p) const

is performed in-place.

• void operator()(Partial&p) const

Function call operator: same as resample(p).

• template<typename Iter> void resample(Iter begin, Iter end) const

Resample all Partials in the specified (half-open) range using this Resampler’s stored
sampling interval, so that the Breakpoints in thePartial envelopes will all lie on a
common temporal grid.

• template<typename Iter> void operator()(Iter begin, Iter end) const

Function call operator: same as resample(begin, end).

Static Public Member Functions

• template<typename Iter> void resample(Iter begin, Iter end, double sample-
Interval)

Static member that constructs an instance and applies it to asequence of Partials.

3.25.1 Detailed Description

ClassResamplerrepresents an algorithm for resamplingPartialenvelopes at regular
time intervals.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

102 Loris Class Documentation

Resampling makes the envelope data more suitable for exchange (as SDIF data, for
example) with other applications that cannot process raw (continuously-distributed)
reassigned data. Resampling will often greatly reduce the size of the data (by greatly
reducing the number of Breakpoints in the Partials) withoutadversely affecting the
quality of the reconstruction.

3.25.2 Constructor & Destructor Documentation

3.25.2.1 Loris::Resampler::Resampler (doublesampleInterval) [explicit]

Construct a newResamplerusing the specified sampling interval.

Parameters:
sampleInterval is the resampling interval in seconds,Breakpointdata is computed

at integer multiples of sampleInterval seconds.

Exceptions:
InvalidArgument if sampleInterval is not positive.

3.25.3 Member Function Documentation

3.25.3.1 template<typename Iter> void Loris::Resampler::resample (Iter
begin, Iter end, doublesampleInterval) [static]

Static member that constructs an instance and applies it to asequence of Partials.

Construct aResamplerusing the specified resampling interval, and use it to channelize
a sequence of Partials.

Parameters:
begin is the beginning of a sequence of Partials to resample.

end is the end of a sequence of Partials to resample.

sampleInterval is the resampling interval in seconds,Breakpointdata is computed
at integer multiples of sampleInterval seconds.

Exceptions:
InvalidArgument if sampleInterval is not positive.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.25 Loris::Resampler Class Reference 103

If compiled with NO_TEMPLATE_MEMBERS defined, then begin and end must be
PartialList::iterators, otherwise they can be any type of iterators over a sequence of
Partials.

3.25.3.2 template<typename Iter> void Loris::Resampler::resample (Iter
begin, Iter end) const

Resample all Partials in the specified (half-open) range using this Resampler’s stored
sampling interval, so that the Breakpoints in thePartial envelopes will all lie on a
common temporal grid.

The Breakpointtimes in the resampledPartialwill comprise a contiguous sequence
of integer multiples of the sampling interval, beginning with the multiple nearest to
the Partial’s start time and ending with the multiple nearest to the Partial’s end time.
Resampling is performed in-place.

Parameters:
begin is the beginning of the range of Partials to resample

end is (one-past) the end of the range of Partials to resample

If compiled with NO_TEMPLATE_MEMBERS defined, then begin and end must be
PartialList::iterators, otherwise they can be any type of iterators over a sequence of
Partials.

3.25.3.3 void Loris::Resampler::resample (Partial & p) const

is performed in-place.

Parameters:
p is thePartialto resample

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

104 Loris Class Documentation

3.26 Loris::RuntimeError Class Reference

Class of exceptions thrown when an unanticipated runtime error is encountered.

#include <Exception.h>

Inheritance diagram for Loris::RuntimeError::

Loris::RuntimeError

Loris::Exception

Loris::FileIOException

Public Member Functions

• RuntimeError(const std::string &str, const std::string &where="")

string automatically using __FILE__ and __LINE__.

3.26.1 Detailed Description

Class of exceptions thrown when an unanticipated runtime error is encountered.

3.26.2 Constructor & Destructor Documentation

3.26.2.1 Loris::RuntimeError::RuntimeError (const std: :string & str, const
std::string & where= "")

string automatically using __FILE__ and __LINE__.

Parameters:
str is a string describing the exceptional condition

where is an option string describing the location in the source code from which
the exception was thrown (generated automatically by the Throw macro).

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.27 Loris::Sieve Class Reference 105

3.27 Loris::Sieve Class Reference

ClassSieverepresents an algorithm for identifying channelized (seeChannelizer) Par-
tials that overlap in time, and selecting the longer one to represent the channel.

#include <Sieve.h>

Public Member Functions

• Sieve(double partialFadeTime=0.001)

Construct a newSieveusing the specified partial fade time.

• template<typename Iter> void sift (Iter sift_begin, Iter sift_end)

Sift labeled Partials on the specified half-open (STL-style) range.

Static Public Member Functions

• template<typename Iter> void sift (Iter sift_begin, Iter sift_end, double partial-
FadeTime)

Static member that constructs an instance and applies it to asequence of Partials.

3.27.1 Detailed Description

ClassSieverepresents an algorithm for identifying channelized (seeChannelizer) Par-
tials that overlap in time, and selecting the longer one to represent the channel.

The identification of overlap includes the time needed for Partials to fade to and from
zero amplitude in synthesis (

See also:
Synthesizer) or distillation. (
Distiller)

In some cases, the energy redistribution effected by the distiller (seeDistiller) is unde-
sirable. In such cases, the partials can be sifted before distillation. The sifting process
in Loris identifies all the partials that would be rejected (and converted to noise energy)
by the distiller and assigns them a label of 0. These sifted partials can then be identi-
fied and treated sepearately or removed altogether, or they can be passed through the
distiller unlabeled, and crossfaded in the morphing process (

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

106 Loris Class Documentation

See also:
Morpher).

3.27.2 Constructor & Destructor Documentation

3.27.2.1 Loris::Sieve::Sieve (doublepartialFadeTime= 0.001) [explicit]

Construct a newSieveusing the specified partial fade time.

If unspecified, the fade time defaults to one millisecond (0.001 s).

Parameters:
partialFadeTime is the extra time (in seconds) added to each end of aPartialto

accomodate the fade to and from zero amplitude. Default is 0.001 (one mil-
lisecond). ThePartialfade time must be non-negative.

Exceptions:
InvalidArgument if partialFadeTime is negative.

3.27.3 Member Function Documentation

3.27.3.1 template<typename Iter> void Loris::Sieve::sift (Iter sift_begin, Iter
sift_end, doublepartialFadeTime) [static]

Static member that constructs an instance and applies it to asequence of Partials.

Construct aSieveusing the specifiedPartialfade time (in seconds), and use it to sift a
sequence of Partials.

Parameters:
sift_begin is the beginning of the range of Partials to sift

sift_end is (one-past) the end of the range of Partials to sift

partialFadeTime is the extra time (in seconds) added to each end of aPartialto
accomodate the fade to and from zero amplitude. ThePartialfade time must
be non-negative.

Exceptions:
InvalidArgument if partialFadeTime is negative.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

3.27 Loris::Sieve Class Reference 107

If compiled with NO_TEMPLATE_MEMBERS defined, then begin and end must be
PartialList::iterators, otherwise they can be any type of iterators over a sequence of
Partials.

3.27.3.2 template<typename Iter> void Loris::Sieve::sift (Iter sift_begin, Iter
sift_end)

Sift labeled Partials on the specified half-open (STL-style) range.

Parameters:
sift_begin is the beginning of the range of Partials to sift

sift_end is (one-past) the end of the range of Partials to sift

If compiled with NO_TEMPLATE_MEMBERS defined, then sift_begin and sift_end
must be PartialList::iterators, otherwise they can be any type of iterators over a se-
quence of Partials.

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

Index

absorb
Loris::Partial,80

addNoiseEnergy
Loris::Breakpoint,27

addPartial
Loris::AiffFile, 9

addPartials
Loris::AiffFile, 9

AiffFile
Loris::AiffFile, 7–9

ampFloor
Loris::Analyzer,17

amplitudeAt
Loris::Partial,80

amplitudeShape
Loris::Morpher,68

analyze
Loris::Analyzer,17, 18

Analyzer
Loris::Analyzer,16, 17

append
Loris::Exception,48

AssertionFailure
Loris::AssertionFailure,24

bandwidthAt
Loris::Partial,80

begin
Loris::FourierTransform,53

Breakpoint
Loris::Breakpoint,27

breakpoint
Loris::Partial_ConstIterator,90
Loris::Partial_Iterator,95

BreakpointEnvelope
Loris::BreakpointEnvelope,31

bwRegionWidth

Loris::Analyzer,19

channelize
Loris::Channelizer,35, 36

Channelizer
Loris::Channelizer,34

configure
Loris::Analyzer,19

crossfade
Loris::Morpher,68

dilate
Loris::Dilator,40, 41

Dilator
Loris::Dilator,39

distill
Loris::Distiller, 45, 46

Distiller
Loris::Distiller, 45

duration
Loris::Partial,81

end
Loris::FourierTransform,53
Loris::Partial,81

endTime
Loris::Partial,81

erase
Loris::Partial,81, 82

Exception
Loris::Exception,48

fadeSrcBreakpoint
Loris::Morpher,69

fadeTgtBreakpoint
Loris::Morpher,69

FileIOException
Loris::FileIOException,50

INDEX 109

findAfter
Loris::Partial,82

findNearest
Loris::Partial,83

first
Loris::Partial,83, 84

FourierTransform
Loris::FourierTransform,52

freqDrift
Loris::Analyzer,19

freqFloor
Loris::Analyzer,19

freqResolution
Loris::Analyzer,20

frequencyAt
Loris::Partial,84

IndexOutOfBounds
Loris::IndexOutOfBounds,56

initialPhase
Loris::Partial,84

insert
Loris::BreakpointEnvelope,32
Loris::Dilator,42
Loris::Partial,84

insertBreakpoint
Loris::BreakpointEnvelope,32

InvalidArgument
Loris::InvalidArgument,57

InvalidIterator
Loris::InvalidIterator,58

InvalidObject
Loris::InvalidObject,60

InvalidPartial
Loris::InvalidPartial,62

last
Loris::Partial,85

Loris::AiffFile, 5
Loris::AiffFile

addPartial,9
addPartials,9
AiffFile, 7–9
midiNoteNumber,10
numFrames,10
operator=,10

setMidiNoteNumber,10
write, 11

Loris::Analyzer,13
ampFloor,17
analyze,17, 18
Analyzer,16, 17
bwRegionWidth,19
configure,19
freqDrift, 19
freqFloor,19
freqResolution,20
operator=,20
setAmpFloor,20
setBwRegionWidth,20
setCropTime,20
setFreqDrift,21
setFreqFloor,21
setFreqResolution,21
setHopTime,21
setSidelobeLevel,22
setWindowWidth,22
sidelobeLevel,22
windowWidth,22

Loris::AssertionFailure,24
Loris::AssertionFailure

AssertionFailure,24
Loris::Breakpoint,26

addNoiseEnergy,27
Breakpoint,27
setAmplitude,28
setBandwidth,28
setFrequency,28
setPhase,28

Loris::BreakpointEnvelope,30
Loris::BreakpointEnvelope

BreakpointEnvelope,31
insert,32
insertBreakpoint,32
valueAt,32

Loris::Channelizer,33
channelize,35, 36
Channelizer,34
operator=,36

Loris::Dilator,38
dilate,40, 41
Dilator, 39

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

110 INDEX

insert,42
operator(),42, 43
warpTime,43

Loris::Distiller, 44
distill, 45, 46
Distiller, 45
operator(),46

Loris::Exception,47
append,48
Exception,48
str,48
what,49

Loris::FileIOException,50
Loris::FileIOException

FileIOException,50
Loris::FourierTransform,51
Loris::FourierTransform

begin,53
end,53
FourierTransform,52
operator=,54
operator[],54
size,55
transform,55

Loris::IndexOutOfBounds,56
Loris::IndexOutOfBounds

IndexOutOfBounds,56
Loris::InvalidArgument,57
Loris::InvalidArgument

InvalidArgument,57
Loris::InvalidIterator,58
Loris::InvalidIterator

InvalidIterator,58
Loris::InvalidObject,60
Loris::InvalidObject

InvalidObject,60
Loris::InvalidPartial,62
Loris::InvalidPartial

InvalidPartial,62
Loris::Morpher,64

amplitudeShape,68
crossfade,68
fadeSrcBreakpoint,69
fadeTgtBreakpoint,69
minBreakpointGap,69
morph,69

morphBreakpoints,70
Morpher,67
morphPartial,70
morphSrcBreakpoint,71
morphTgtBreakpoint,71
operator=,72
setAmplitudeShape,72
setMinBreakpointGap,72
setSourceReferenceLabel,73
setTargetReferenceLabel,73
sourceReferenceLabel,73
targetReferenceLabel,73

Loris::Partial,75
absorb,80
amplitudeAt,80
bandwidthAt,80
duration,81
end,81
endTime,81
erase,81, 82
findAfter, 82
findNearest,83
first, 83, 84
frequencyAt,84
initialPhase,84
insert,84
last,85
operator=,85
parametersAt,85
Partial,79
phaseAt,86
ShortestSafeFadeTime,87
size,86
split, 87
startTime,87

Loris::Partial_ConstIterator,89
Loris::Partial_ConstIterator

breakpoint,90
operator∗, 91
operator!=,93
operator++,91
operator–,92
operator->, 92
operator==,93
Partial_ConstIterator,90
time,92

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

INDEX 111

Loris::Partial_Iterator,94
breakpoint,95
operator∗, 95
operator!=,97
operator++,95, 96
operator–,96
operator->, 97
operator==,98
time,97

Loris::PartialUtils::AmplitudeScaler,
12

Loris::PartialUtils::BandwidthScaler,
25

Loris::PartialUtils::Cropper,37
Loris::PartialUtils::PartialMutator,99
Loris::PartialUtils::PartialMutator

operator(),100
operator=,100

Loris::Resampler,101
resample,102, 103
Resampler,102

Loris::RuntimeError,104
Loris::RuntimeError

RuntimeError,104
Loris::Sieve,105

Sieve,106
sift, 106, 107

midiNoteNumber
Loris::AiffFile, 10

minBreakpointGap
Loris::Morpher,69

morph
Loris::Morpher,69

morphBreakpoints
Loris::Morpher,70

Morpher
Loris::Morpher,67

morphPartial
Loris::Morpher,70

morphSrcBreakpoint
Loris::Morpher,71

morphTgtBreakpoint
Loris::Morpher,71

numFrames

Loris::AiffFile, 10

operator∗
Loris::Partial_ConstIterator,91
Loris::Partial_Iterator,95

operator!=
Loris::Partial_ConstIterator,93
Loris::Partial_Iterator,97

operator()
Loris::Dilator,42, 43
Loris::Distiller, 46
Loris::PartialUtils::Partial-

Mutator,100
operator++

Loris::Partial_ConstIterator,91
Loris::Partial_Iterator,95, 96

operator–
Loris::Partial_ConstIterator,92
Loris::Partial_Iterator,96

operator->
Loris::Partial_ConstIterator,92
Loris::Partial_Iterator,97

operator=
Loris::AiffFile, 10
Loris::Analyzer,20
Loris::Channelizer,36
Loris::FourierTransform,54
Loris::Morpher,72
Loris::Partial,85
Loris::PartialUtils::Partial-

Mutator,100
operator==

Loris::Partial_ConstIterator,93
Loris::Partial_Iterator,98

operator[]
Loris::FourierTransform,54

parametersAt
Loris::Partial,85

Partial
Loris::Partial,79

Partial_ConstIterator
Loris::Partial_ConstIterator,90

phaseAt
Loris::Partial,86

resample

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

112 INDEX

Loris::Resampler,102, 103
Resampler

Loris::Resampler,102
RuntimeError

Loris::RuntimeError,104

setAmpFloor
Loris::Analyzer,20

setAmplitude
Loris::Breakpoint,28

setAmplitudeShape
Loris::Morpher,72

setBandwidth
Loris::Breakpoint,28

setBwRegionWidth
Loris::Analyzer,20

setCropTime
Loris::Analyzer,20

setFreqDrift
Loris::Analyzer,21

setFreqFloor
Loris::Analyzer,21

setFreqResolution
Loris::Analyzer,21

setFrequency
Loris::Breakpoint,28

setHopTime
Loris::Analyzer,21

setMidiNoteNumber
Loris::AiffFile, 10

setMinBreakpointGap
Loris::Morpher,72

setPhase
Loris::Breakpoint,28

setSidelobeLevel
Loris::Analyzer,22

setSourceReferenceLabel
Loris::Morpher,73

setTargetReferenceLabel
Loris::Morpher,73

setWindowWidth
Loris::Analyzer,22

ShortestSafeFadeTime
Loris::Partial,87

sidelobeLevel
Loris::Analyzer,22

Sieve
Loris::Sieve,106

sift
Loris::Sieve,106, 107

size
Loris::FourierTransform,55
Loris::Partial,86

sourceReferenceLabel
Loris::Morpher,73

split
Loris::Partial,87

startTime
Loris::Partial,87

str
Loris::Exception,48

targetReferenceLabel
Loris::Morpher,73

time
Loris::Partial_ConstIterator,92
Loris::Partial_Iterator,97

transform
Loris::FourierTransform,55

valueAt
Loris::BreakpointEnvelope,32

warpTime
Loris::Dilator,43

what
Loris::Exception,49

windowWidth
Loris::Analyzer,22

write
Loris::AiffFile, 11

Generated on Thu Apr 7 22:49:02 2005 for Loris by Doxygen

	Loris Hierarchical Index
	Loris Class Hierarchy

	Loris Class Index
	Loris Class List

	Loris Class Documentation
	Loris::AiffFile Class Reference
	Loris::PartialUtils::AmplitudeScaler Class Reference
	Loris::Analyzer Class Reference
	Loris::AssertionFailure Class Reference
	Loris::PartialUtils::BandwidthScaler Class Reference
	Loris::Breakpoint Class Reference
	Loris::BreakpointEnvelope Class Reference
	Loris::Channelizer Class Reference
	Loris::PartialUtils::Cropper Class Reference
	Loris::Dilator Class Reference
	Loris::Distiller Class Reference
	Loris::Exception Class Reference
	Loris::FileIOException Class Reference
	Loris::FourierTransform Class Reference
	Loris::IndexOutOfBounds Class Reference
	Loris::InvalidArgument Class Reference
	Loris::InvalidIterator Class Reference
	Loris::InvalidObject Class Reference
	Loris::InvalidPartial Class Reference
	Loris::Morpher Class Reference
	Loris::Partial Class Reference
	Loris::Partial_ConstIterator Class Reference
	Loris::Partial_Iterator Class Reference
	Loris::PartialUtils::PartialMutator Class Reference
	Loris::Resampler Class Reference
	Loris::RuntimeError Class Reference
	Loris::Sieve Class Reference

