Image formation

Cameras gather light scattered from objects to create 2D images

Digital images

The input to a vision algorithm is an array of intensities or color values

Figure 24.4 (a) Magnified view of a 12×12 block of pixels from Figure 24.3. (b) The associated image brightness values.

Image formation

- Intensity of a pixel depends on:
 - Geometry of the scene
 - Reflectance of surfaces
 - Illumination
 - Camera viewpoint
 - Noise
- Our visual system is able to factor out these different aspects very well

Lightness perception

Lightness perception

First problem: Edge detection

Goal: compute something like a line drawing of a scene

Input: grayscale image

Output: binary image where 1 = "edge"

Matching edge templates

best match

Search the image for the best match of the model

- how to measure match quality?
- how to search for best match quickly?

Stereo vision / 3D reconstruction

Goal: recover 3D information from multiple 2D images

Input: multiple images

Output: depth map or 3D model

Motion estimation

Goal: estimate the motion of objects

Input: sequence of images

Output: velocity field

Object detection/recognition

3D models

Articulated objects

Deformable shapes

Perceptual grouping

Goal: group pixels or tokens into meaningful objects

