
CMSC 23700
Fall 2005

Introduction to Computer Graphics Handout 3
October 18

The GML Specification

1 The GML language

The ray tracer in Project-1 takes as input a scene description (or model) written in a functional
modeling language called GML. The language has a syntax and execution model that is similar to
PostScript (and Forth), but GML is lexically scoped and does not have side effects. This document
specifies the syntax and semantics of GML.

1.1 Syntax

A GML program is written using a subset of the printable ASCII character set (including space),
plus tab, return, linefeed and vertical tab characters. The space, tab, return, linefeed and vertical tab
characters are called whitespace.

The characters %, [, ], {, } are special characters.

Any occurrence of the character “%” not inside a string literal (see below) starts a comment,
which runs to the end of the current line. Comments are treated as whitespace when tokenizing the
input file.

The syntax of GML is given in Figure 1 (an opt superscript means an optional item and a *
superscript means a sequence of zero or more items). A GML program is a token list, which is
a sequence of zero or more token groups. A token group is either a single token, a function (a
token list enclosed in ‘{’ ‘}’), or an array (a token list enclosed in ‘[’ ‘]’). Tokens do not have
to be separated by white space when it is unambiguous. Whitespace is not allowed in numbers,
identifiers, or binders.

Identifiers must start with an letter and can contain letters, digits, dashes (‘-’), and underscores
(‘_’). A subset of the identifiers are used as predefined operators, which may not be rebound. A list
of the operators can be found in the appendix. A binder is an identifier prefixed with a ‘/’ character.

Numbers are either integers or reals. The syntax of numbers is given by the following grammar:

Number
::= Integer
| Real

Integer
::= -opt DecimalNumber



TokenList
::= TokenGroup∗

TokenGroup
::= Token
| { TokenList }
| [ TokenList ]

Token
::= Operator
| Identifier
| Binder
| Number
| String

Figure 1: GML grammar

Real
::= -opt DecimalNumber . DecimalNumber Exponentopt

| -opt DecimalNumber Exponent

Exponent
::= e -opt DecimalNumber
| E -opt DecimalNumber

where a DecimalNumber is a sequence of one or more decimal digits. Integers represented by
32-bit 2’s complement values and reals by 64-bit IEEE floating-point values.

Strings are written enclosed in double quotes (‘"’) and may contain any printable character other
than the double quote (but including the space character). There are no escape sequences.

1.2 Evaluation

We define the evaluation semantics of a GML program using an abstract machine. The state of
the machine is a triple 〈Γ; α; c〉, where Γ is an environment mapping identifiers to values, α is a
stack of values, and c is a sequence of token groups. More formally, we use the following semantic
definitions:

i ∈ Int
ι ∈ BaseValue = Bool ∪ Int ∪ Real ∪ String
v ∈ Value = BaseValue ∪ Closure ∪Array ∪ Point ∪Object ∪ Light

(Γ, c) ∈ Closure = Env × Code
a, [v1 . . . vn] ∈ Array = Value∗

Γ ∈ Env = Id fin→ Value
α, β ∈ Stack = Value∗

c ∈ Code = TokenList

2



〈Γ; α; ι c〉 =⇒ 〈Γ; α ι; c〉 (1)

〈Γ; α v ; /x c〉 =⇒ 〈Γ±xv ; α; c〉 (2)

〈Γ; α; x c〉 =⇒ 〈Γ; α Γ(x ); c〉 (3)

〈Γ; α; {c′} c〉 =⇒ 〈Γ; α (Γ, c′); c〉 (4)

〈Γ′; α; c′〉 =⇒∗ 〈Γ′′; β; ε〉
〈Γ; α (Γ′, c′); apply c〉 =⇒ 〈Γ; β; c〉

(5)

〈Γ; ε; c′〉 =⇒∗ 〈Γ′; v1 . . . vn; ε〉
〈Γ; α; [c′] c〉 =⇒ 〈Γ; α [v1 . . . vn]; c〉

(6)

〈Γ1; α; c1〉 =⇒∗ 〈Γ′′; β; ε〉
〈Γ; α true (Γ1, c1) (Γ2, c2); if c〉 =⇒ 〈Γ; β; c〉

(7)

〈Γ2; α; c2〉 =⇒∗ 〈Γ′′; β; ε〉
〈Γ; α false (Γ1, c1) (Γ2, c2); if c〉 =⇒ 〈Γ; β; c〉

(8)

α OPERATOR α′

〈Γ; β α; OPERATOR c〉 =⇒ 〈Γ; β α′; c〉
(9)

Figure 2: Evaluation rules for GML

Evaluation from one state to another is written as 〈Γ; α; c〉 =⇒ 〈Γ′; α′; c′〉. We define =⇒∗ to
be the transitive closure of =⇒. Figure 2 gives the GML evaluation rules. In these rules, we write
stacks with the top to the right (e.g.; α x is a stack with x as its top element) and token sequences
are written with the first token on the left. We use ε to signify the empty stack and the empty code
sequence.

Rule 1 (Section 1) describes the evaluation of a literal token, which is pushed on the stack.
The next two rules describe the semantics of variable binding and reference. Rules 4 (Section 4)
and 5 (Section 5) describe function-closure creation and the apply operator. Rule 6 (Section 6)
describes the evaluation of an array expression; note that body of the array expression is evaluated
on an initially empty stack. The semantics of the if operator are given by Rules 7 (Section 7) and 8
(Section 8). The last evaluation rule (Rule 9 (Section 9)) describes how an operator (other than one
of the control operators) is evaluated. We write

α OPERATOR α′

to mean that the operator OPERATOR transforms the stack α to the stack α′. This notation is used
below to specify the GML operators.

We write Eval(c, v1, . . . , vn) = (v ′
1, . . . , v ′

n) for when a program c yields (v ′
1, . . . , v ′

n) when
applied to the values v1, . . . , vn; i.e., when 〈{}; v1 · · · vn; c〉 =⇒∗ 〈Γ; v ′

1 · · · , v ′
n; ε〉.

There is no direct support for recursion in GML, but one can program recursive functions by

3



explicitly passing the function as an extra argument to itself (see Section 1.8 for an example).

1.3 Control operators

GML contains two control operators that can be used to implement control structures. These oper-
ators are formally defined in Figure 2, but we provide an informal description here.

The apply operator takes a function closure, (Γ, c), off the stack and evaluates c using the
environment Γ and the current stack. When evaluation of c is complete (i.e., there are no more
instructions left), the previous environment is restored and execution continues with the instruction
after the apply. Argument and result passing is done via the stack. For example:

1 { /x x x } apply addi

will evaluate to 2. Note that functions bind their variables according to the environment where they
are defined; not where they are applied. For example the following code evaluates to 3:

1 /x % bind x to 1
{ x } /f % the function f pushes the value of x
2 /x % rebind x to 2
f apply x addi

The if operator takes two closures and a boolean off the stack and evaluates the first closure if
the boolean is true, and the second if the boolean is false. For example,

b { 1 } { 2 } if

will result in 1 on the top of the stack if b is true, and 2 if it is false

1.4 Booleans

GML supports the standard boolean type with three operators:

ε false false
pushes the boolean false value.

b1 not b2

computes the negation b2 of the boolean b1.

ε true true
pushes the boolean true value.

1.5 Numbers

GML supports both integer and real numbers (which are represented by IEEE double-precision
floating-point numbers). Many of the numeric operators have both integer and real versions, so we
combine their descriptions in the following:

n1 n2 addi/addf n3

computes the sum n3 of the numbers n1 and n2.

4



r1 acos r2

computes the arc cosine r2 in degrees of r1. The result is undefined if r1 < −1 or 1 < r1.

r1 asin r2

computes the arc sine r2 in degrees of r1. The result is undefined if r1 < −1 or 1 < r1.

r1 clampf r2

computes r2 =


0.0 r1 < 0.0
1.0 r1 > 1.0
r1 otherwise

.

r1 cos r2

computes the cosine r2 of r1 in degrees.

n1 n2 divi/divf n3

computes the quotient n3 of dividing the number n1 by n2. The divi operator rounds its
result towards 0. For the divi operator, if n2 is zero, then the program halts. For divf, the
effect of division by zero is undefined.

n1 n2 eqi/eqf b
compares the numbers n1 and n2 and pushes true if n1 is equal to n2; otherwise false is
pushed.

r floor i
converts the real r to the greatest integer i that is less than or equal to r.

r1 frac r2

computes the fractional part r2 of the real number r1. The result r2 will always have the same
sign as the argument r1.

n1 n2 lessi/lessf b
compares the numbers n1 and n2 and pushes true if n1 is less than n2; otherwise false is
pushed.

i1 i2 modi i3
computes the remainder i3 of dividing i1 by i2. The following relation holds between divi
and modi:

i2(i1 divi i2) + (i1 mod i2) = i1

n1 n2 muli/mulf n3

computes the product n3 of the numbers n1 and n2.

n1 negi/negf n2

computes the negation n2 of the number n1.

i real r
converts the integer i to its real representation r.

r1 sin r2

computes the sine r2 of r1 in degrees.

r1 sqrt r2

computes the square root r2 of r1. If r1 is negative, then the interpreter should halt.

5



n1 n2 subi/subf n3

computes the difference n3 of subtracting the number n2 from n1.

1.6 Points

A point is comprised of three real numbers. Points are used to represent positions, vectors, and
colors (in the latter case, the range of the components is restricted to [0.0, 1.0]). There are four
operations on points:

p getx x
gets the first component x of the point p.

p gety y
gets the second component y of the point p.

p getz z
gets the third component z of the point p.

x y z point p
creates a point p from the reals x, y, and z.

1.7 Arrays

There are two operations on arrays:

arr i get vi

gets the ith element of the array arr . Array indexing is zero based in GML. If i is out of
bounds, the GML interpreter should terminate.

arr length n
gets the number of elements in the array arr .

The elements of an array do not have to have the same type and arrays can be used to construct data
structures. For example, we can implement lists using two-element arrays for cons cells and the
zero-length array for nil.

[] /nil
{ /cdr /car [ car cdr ] } /cons

We can also write a function that “pattern matches” on the head of a list.

{ /if-cons /if-nil /lst
lst length 0 eqi
if-nil
{ lst 0 get lst 1 get if-cons apply }
if

}

6



1.8 Examples

Some simple function definitions written in GML:

{ } /id % the identity function
{ 1 addi } /inc % the increment function
{ /x /y x y } /swap % swap the top two stack locations
{ /x x x } /dup % duplicate the top of the stack
{ dup apply muli } /sq % the squaring function
{ /a /b a { true } { b } if } /or % logical-or function
{ /p % negate a point value

p getx negf
p gety negf
p getz negf point

} /negp

A more substantial example is the GML version of the recursive factorial function:

{ /self /n
n 2 lessi
{ 1 }
{ n 1 subi self self apply n muli }
if

} /fact

Notice that this function follows the convention of passing itself as the top-most argument on the
stack. We can compute the factorial of 12 with the expression

12 fact fact apply

2 Ray tracing operations

In this section, we describe how the GML interpreter supports ray tracing.

2.1 Coordinate systems

GML models are defined in terms of two coordinate systems: world coordinates and object coordi-
nates. World coordinates are used to specify the position of lights while object coordinates are used
to specify primitive objects. There are six transformation operators (described in Section 2.3) that
are used to map object space to world space.

The world-coordinate system is left-handed. The X-axis goes to the right, the Y -axis goes up,
and the Z-axis goes away from the viewer.

2.2 Geometric primitives

There are five operations in GML for constructing primitive solids: sphere, cube, cylinder,
cone, and plane. Each of these operations takes a single function as an argument, which defines
the primitive’s surface properties (see Section 2.6).

surface sphere obj
creates a sphere of radius 1 centered at the origin with surface properties specified by the

7



function surface. Formally, the sphere is defined by x2 + y2 + z2 ≤ 1.

surface cube obj
creates a unit cube with opposite corners (0, 0, 0) and (1, 1, 1). The function surface specifies
the cube’s surface properties. Formally, the cube is defined by 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, and
0 ≤ z ≤ 1.

surface cylinder obj
creates a cylinder of radius 1 and height 1 with surface properties specified by the function
surface. The base of the cylinder is centered at (0, 0, 0) and the top is centered at (0, 1, 0)
(i.e., the axis of the cylinder is the Y -axis). Formally, the cylinder is defined by x2 + z2 ≤ 1
and 0 ≤ y ≤ 1.

surface cone obj
creates a cone with base radius 1 and height 1 with surface properties specified by the function
surface . The apex of the cone is at (0, 0, 0) and the base of the cone is centered at (0, 1, 0).
Formally, the cone is defined by x2 + z2 − y2 ≤ 0 and 0 ≤ y ≤ 1.

surface plane obj
creates a plane object with the equation y = 0 with surface properties specified by the function
surface . Formally, the plane is the half-space y ≤ 0.

2.3 Transformations

Fixed size objects at the origin are not very interesting, so GML provides transformation operations
to place objects in world space. Each transformation operator takes an object and one or more reals
as arguments and returns the transformed object. The operations are:

obj rtx rty rtz translate obj ′

translates obj by the vector (rtx , rty , rtz ). I.e., if obj is at position (px, py, pz), then obj ′ is at
position (px + rtx , py + rty , pz + rtz ).

obj rsx rsy rsz scale obj ′

scales obj by rsx in the X-dimension, rsy in the Y -dimension, and rsz in the Z dimension.

obj rs uscale obj ′

uniformly scales obj by rs in each dimension. This operation is called Isotropic scaling.

obj θ rotatex obj ′

rotates obj around the X-axis by θ degrees. Rotation is measured counterclockwise when
looking along the X-axis from the origin towards +∞.

obj θ rotatey obj ′

rotates obj around the Y -axis by θ degrees. Rotation is measured counterclockwise when
looking along the Y -axis from the origin towards +∞.

obj θ rotatez obj ′

rotates obj around the Z-axis by θ degrees. Rotation is measured counterclockwise when
looking along the Z-axis from the origin towards +∞.

8




1 0 0 rtx

0 1 0 rty

0 0 1 rtz

0 0 0 1




rsx 0 0 0
0 rsy 0 0
0 0 rsz 0
0 0 0 1




rs 0 0 0
0 rs 0 0
0 0 rs 0
0 0 0 1


Translation Scale matrix Isotropic scale matrix

1 0 0 0
0 cos(θ) − sin(θ) 0
0 sin(θ) cos(θ) 0
0 0 0 1




cos(θ) 0 sin(θ) 0
0 1 0 0

− sin(θ) 0 cos(θ) 0
0 0 0 1




cos(θ) − sin(θ) 0 0
sin(θ) cos(θ) 0 0

0 0 1 0
0 0 0 1


Rotation (X-axis) Rotation (Y -axis) Rotation (Z-axis)

Figure 3: Transformation matrices

For example, if we want to put a sphere of radius 2.0 at (5.0, 5.0, 5.0), we can use the following
GML code:

{ ... } sphere
2.0 uscale
5.0 5.0 5.0 translate

The first line creates the sphere (as described in Section 2.2, the sphere operator takes a single
function argument). The second line uniformly scales the sphere by a factor of 2.0, and the third
line translates the sphere to (5.0, 5.0, 5.0).

These transformations are all affine transformations and they have the property of preserving the
straightness of lines and parallelism between lines, but they can alter the distance between points and
the angle between lines. Using homogeneous coordinates, these transformations can be expressed
as multiplication by a 4×4 matrix. Figure 3 describes the matrices that correspond to each of the
transformation operators. For example, translating the point (2.6, 3.0,−5.0) by (−1.6,−2.0, 6.0)
is expressed as the following multiplication:

1.0 0.0 0.0 −1.6
0.0 1.0 0.0 −2.0
0.0 0.0 1.0 6.0
0.0 0.0 0.0 1.0




2.6
3.0
−5.0
1.0

 =


1.0
1.0
1.0
1.0


Observe that points have a fourth coordinate of 1, whereas vectors have a fourth coordinate of 0.
Thus, translation has no effect on vectors.

2.4 Illumination model

When the ray that shoots from the eye position through a pixel hits a surface, we need to apply
the illumination equation to determine what color the pixel should have. Figure 4 shows a situation
where a ray from the viewer has hit a surface. The illumination at this point is given by the following
equation:

I = kaIaC + kd

ls∑
j=1

max(N · Lj , 0)IjC + ks

ls∑
j=1

(N ·Hj)nIj + ksIs (10)

9



NLj
Hj

Light j

S

Viewer

Surface

θ θ
φ

φ

Figure 4: A ray intersecting a surface

where
ka = ambient reflection coefficient
Ia = intensity of ambient lighting
C = surface color
kd = diffuse reflection coefficient
N = unit surface normal
Lj = unit vector in direction of jth light source
Ij = intensity of jth light source
ks = specular reflection coefficient
Hj = unit vector in the direction halfway between the viewer and Lj

n = Phong exponent
S = reflection vector
Is = intensity of light from direction S

The four components of this equation correspond to the local ambient lighting, the local diffuse
lighting, the local specular lighting, and the global reflection (resp.). The view vector, N, and S all
lie in the same plane. The vector S is called the reflection vector and forms the same angle with N
as the vector to the viewer does (this angle is labeled θ in Figure 4). Light intensity is represented as
point in GML and multiplication of points is component wise. The values of C, ka, kd, ks, and n are
the surface properties of the object at the point of reflection. Section 2.6 describes the mechanism
for specifying these values for an object.

Computing the contribution of lights (the Ij part of the above equation) requires casting a
shadow ray from the intersection point to the light’s position. If the ray hits an object that is closer
than the light, then the light does not contribute to the illumination of the intersection point.

Ray tracing is a recursive process. Computing the value of Is requires shooting a ray in the
direction of S and seeing what object (if any) it intersects. To avoid infinite recursion, we limit
the tracing to some depth. The depth limit is given as an argument to the render operator (see
Section 2.8).

10



pos

at

cutoff

Figure 5: Spotlight

2.5 Lights

GML supports three types of light sources: directional lights, point lights and spotlights. Directional
lights are assumed to be infinitely far away and have only a direction. Point lights have a position and
an intensity (specified as a color triple), and they emit light uniformly in all directions. Spotlights
emit a cone of light in a given direction. The light cone is specified by three parameters: the light’s
direction, the light’s cutoff angle, and an attenuation exponent (see Figure 5). Unlike geometric
objects, lights are defined in terms of world coordinates.

dir color light l
creates a directional light source at infinity with direction dir and intensity color . Both dir
and color are specified as point values.

pos color pointlight l
creates a point-light source at the world coordinate position pos with intensity color . Both
pos and color are specified as point values.

pos at color cutoff exp spotlight l
creates a spotlight source at the world coordinate position pos pointing towards the position
at . The light’s color is given by color . The spotlight’s cutoff angle is given in degrees by
cutoff and the attenuation exponent is given by exp (these are real numbers). The intensity of
the light from a spotlight at a point Q is determined by the angle between the light’s direction
vector (i.e., the vector from pos to at) and the vector from pos to Q. If the angle is greater
than the cutoff angle, then intensity is zero; otherwise the intensity is given by the equation

I =
(

at − pos
|at − pos|

· Q− pos
|Q− pos|

)exp

color (11)

The light from point lights and spotlights is attenuated by the distance from the light to the surface.
The attenuation equation is:

Isurface =
I

a0 + a1d + a2d2
(12)

11



Table 1: Texture coordinates for primitives

SPHERE
(0, u, v) (

√
1− y2 sin(360u), y,

√
1− y2 cos(360u)), where y = 2v − 1

CUBE
(0, u, v) (u, v, 0) front
(1, u, v) (u, v, 1) back
(2, u, v) (0, v, u) left
(3, u, v) (1, v, u) right
(4, u, v) (u, 1, v) top
(5, u, v) (u, 0, v) bottom

CYLINDER
(0, u, v) (sin(360u), v, cos(360u)) side
(1, u, v) (2u− 1, 1, 2v − 1) top
(2, u, v) (2u− 1, 0, 2v − 1) bottom

CONE
(0, u, v) (v sin(360u), v, v cos(360u)) side
(1, u, v) (2u− 1, 1, 2v − 1) base

PLANE
(0, u, v) (u, 0, v)

where I is the intensity of the light, d is the distance from the light to the surface, and the ai

are the attenuation coefficients given to the render command (see Section 2.8). Note that the
light reflected from surfaces (the ksIs term in Equation 10) is not attenuated; nor is the light from
directional sources.

2.6 Surface functions

GML uses procedural texturing to describe the surface properties of objects. The basic idea is that
the model provides a function for each object, which maps positions on the object to the surface
properties that determine how the object is illuminated (see Section 2.4).

A surface function takes three arguments: an integer specifying an object’s face and two texture
coordinates. For all objects, except planes, the texture coordinates are restricted to the range 0 ≤
u, v ≤ 1. The Table 1 specifies how these coordinates map to points in object-space for the various
builtin graphical objects. Note that the arguments to the sin and cos functions are in degrees. The
GML implementation is responsible for the inverse mapping; i.e., given a point on a solid, compute
the texture coordinates.

A surface function returns a point representing the surface color (C), and four real numbers:
the ambient reflection coefficient (ka), the diffuse reflection coefficient (kd), the specular reflection
coefficient (ks), and the Phong exponent (n). For example, the code in Figure 6 defines a cube with
a matte 3×3 black and white checked pattern on each face.

12



0.0 0.0 0.0 point /black
1.0 1.0 1.0 point /white

[ % 3x3 pattern
[ black white black ]
[ white black white ]
[ black white black ]

] /texture

{ /v /u /face % bind parameters
{ % toIntCoord : float -> int
3.0 mulf floor /i % i = floor(3.0*r)
i 3 eqi { 2 } { i } if % make sure i is not 3

} /toIntCoord
texture u toIntCoord apply get % color = texture[u][v]
v toIntCoord apply get

1.0 % ka = 1.0
1.0 % kd = 1.0
0.0 % ks = 0.0
1.0 % n = 1.0

} cube

Figure 6: A checked pattern on a cube

2.7 Constructive solid geometry

Solid objects may be combined using boolean set operations to form more complex solids. There
are three composition operations:

obj 1 obj2 union obj3
forms the union obj3 of the two solids obj 1 and obj 2.

obj 1 obj2 intersect obj3
forms the intersection obj3 of the two solids obj 1 and obj 2.

obj 1 obj2 difference obj3
forms the solid obj 3 that is the solid obj 1 minus the solid obj 2.

We can determine the intersection of a ray and a compound solid by recursively computing
the intersections of the ray and the solid’s pieces (both entries and exits) and then merging the
information according to the boolean composition operator. Figure 7 illustrates this process for two
objects (this picture is called a Roth diagram).

When rendering a composite object, the surface properties are determined by the primitive that
defines the surface. If the surfaces of two primitives coincide, then which primitive defines the
surface properties is unspecified.

2.8 Rendering

The render operator causes the scene to be rendered to a file.

13



A
B

A+B
A&B
A-B
B-A

A

B

Figure 7: Tracing a ray through a compound solid

amb lights attn obj depth fov wid ht file render —

The render operator renders a scene to a file. It takes nine arguments:

amb the intensity of ambient light (a point).

lights is an array of lights used to illuminate the scene.

attn is a point that represents the light-attenuation coefficients (see Section 2.5), with the a0 coef-
ficient corresponding to the x component of attn , a1 corresponding to the y component, and
a1 corresponding to the z component.

obj is the scene to render.

depth is an integer limit on the recursive depth of the ray tracing owing to specular reflection.
I.e., when depth = 0, we do not recursively compute the contribution from the direction of
reflection (S in Figure 4).

fov is the horizontal field of view in degrees (a real number).

wid is the width of the rendered image in pixels (an integer).

ht is the height of the rendered image in pixels (an integer).

file is a string specifying output file for the rendered image.

14



+Y

+Z

+X(0,0,0)

view plane

eye point

ray

Figure 8: View coordinate system

The render operator is the only GML operator with side effects (i.e., it modifies the host file
system). A GML program may contain multiple render operators (for animation effects).

When rendering a scene, the eye position is fixed at (0, 0,−1) looking down the Z-axis and
the image plane is the XY -plane (see Figure 8). The horizontal field of view (fov ) determines the
width of the image in world space (i.e., it is 2 tan(0.5fov)), and the height is determined from the
aspect ratio. If the upper-left corner of the image is at (x, y, 0) and the width of a pixel is ∆, then
the ray through the jth pixel in the ith row has a direction of (x + (j + 0.5)∆, y − (i + 0.5)∆, 1).
Objects that lie between the view plane and the eye position should not be rendered. One easy way
to achieve this effect is to place the origin of the ray at the view plane (instead of the eye).

When the render operation detects that a ray has intersected the surface of an object, it must
compute the texture coordinates at the point of intersection and apply the surface function to them.
Let (face, u, v) be the texture coordinates and surf be the surface function at the point of intersec-
tion, and let

Eval(surf apply, face, u, v) = (C, ka, kd, ks, n)

Then the surface properties for the illumination equation (see Section 2.4) are C, kd, ks, and n.

2.9 The output format

The output format is the Portable Pixmap (PPM) file format.1 The format consists of a ASCII
header followed by the pixel data in binary form. The format of the header is

• The magic number, which are the two characters “P6.”

• A width, formatted as ASCII characters in decimal.
1On Linux systems, the xv program can be used to view these files and on MacOS X you can use the GraphicsCon-

verter application.

15



• A height, again in ASCII decimal.

• The ASCII text “255,” which is the maximum color-component value.

These items are separated by whitespace (blanks, TABs, CRs, and LFs). After the maximum color
value, there is a single whitespace character (usually a newline), which is followed by the pixel data.
The pixel data is a sequence of three-byte pixel values (red, green, blue) in row-major order. Light
intensity values (represented as GML points) are converted to RGB format by clamping the range
and scaling.

In the header, characters from a “#” to the next end-of-line are ignored (comments). This
comment mechanism should be used to include the group’s name immediately following the line
with the magic number. For example, the sample implementation produces the following header:

P6
# GML Sample Implementation
256 256
255

Operator summary

The following is an alphabetical listing of the GML operators with brief descriptions. The third
column lists the section where the operator is defined and the fourth column specifies whether the
operator is provided by by us are to be implemented by you.

Name Description Section Provided?
acos arc cosine function 1.5 Yes
addi integer addition 1.5 Yes
addf real addition 1.5 Yes
apply function application operator 1.3 Yes
asin arc sine function 1.5 Yes
clampf clamp the range of a real number 1.5 Yes
cone a unit cone 2.2 No
cos cosine function 1.5 Yes
cube a unit cube 2.2 No
cylinder a unit cylinder 2.2 No
difference difference of two solids 2.7 No
divi integer division 1.5 Yes
divf real division 1.5 Yes
eqi integer equality comparison 1.5 Yes
eqf real equality comparison 1.5 Yes
false push the false value 1.4 Yes
floor real to integer conversion 1.5 Yes
frac fractional part of real number 1.5 Yes
get get an array element 1.7 Yes
getx get x component of point 1.6 Yes
gety get y component of point 1.6 Yes
getz get z component of point 1.6 Yes
if conditional control operator 1.3 Yes

16



Name Description Section Provided?
intersect intersection of two solids 2.7 No
length array length 1.7 Yes
lessi integer less-than comparison 1.5 Yes
lessf real less-than comparison 1.5 Yes
light defines a directional light source 2.5 Yes
modi integer remainder 1.5 Yes
muli integer multiplication 1.5 Yes
mulf real multiplication 1.5 Yes
negi integer negation 1.5 Yes
negf real negation 1.5 Yes
not boolean negation 1.4 Yes
plane the XZ-plane 2.2 No
point create a point value 1.6 Yes
pointlight defines a point-light source 2.5 Yes
real convert an integer to a real number 1.5 Yes
render render a scene to a file 2.8 No
rotatex rotation around the X-axis 2.3 No
rotatey rotation around the Y -axis 2.3 No
rotatez rotation around the Z-axis 2.3 No
scale scaling transform 2.3 No
sin sine function 1.5 Yes
sphere a unit sphere 2.2 No
spotlight defines a spotlight source 2.5 Yes
sqrt square root 1.5 Yes
subi integer subtraction 1.5 Yes
subf real subtraction 1.5 Yes
translate translation transform 2.3 No
true push the true value 1.4 Yes
union union of two solids 2.7 No
uscale uniform scaling transform 2.3 No

17


