CMSC 23700 Introduction to Computer Graphics Handout 2
Fall 2005 September 28

Lab tips

This handout provides an introduction to some of the tools you will use to complete the pro-
gramming projects.

Getting Started

You will need an account on the CS machines (this is different from your harper account). If you
do not already have one, you can request one at

www.cs.uchicago.edu/info/services/account._request

You may work on your projects using either Linux or MacOS X. Both Linux and MacOS X
machines with good-quality graphics cards are available for use in the CS Instructional Computing
Laboratory (MacLab) located on the A-Level of Regenstein Library. There are some advantages to
the MacOS X environment as it provides OpenGL performance monitoring tools, but feel free to
work in the environment that you are most comfortable with.

You will be expected to use Subversion for your projects. We will set up Subversion repositories
for you. Projects will be collected for grading directly out of your Subversion repository.

Using OpenGL and GLUT functions in your C programs

In order to use OpenGL and GLUT functions in your program you will need to include the ap-
propriate header files. The file glut . h header file includes the OpenGL header files (g1 .h and
glu.h), so it is the only one you will need to include. Unfortunately, Linux and MacOS X differ
in where they put the g1lut . h file. The following bit of preprocessor code will allow your program
to compile on both platforms:

#if defined(___APPLE_) && defined(__ MACH_)
include <GLUT/glut.h>

#else

include <GL/glut.h>

#endif

Compiling under Linux

On Linux systems, you should use gee version 3.3, which accessed using the path /usr/bin/gcc
(you can check the version of gec using the ——version flag. To compile and link an OpenGL

program under Linux, you must use the following linking options:

-lglut -1GL -1GLU -1m

Compiling under MacOS X

MacOS X also uses gee as its default C compiler. Apple uses a different set of linking flags from
Linux. To link an OpenGL program, you need the following linker flags:

—framework GLUT -framework OpenGL -framework Foundation
The MacLab machines also have two IDEs installed: Metrowerks CodeWarrior and Apples Xcode

(the latter uses gcec as its compiler). You may use these systems to develop and debug your projects,
but please include a makefile in you submissions.

Makefiles

For each of your projects, you should include a makefile in your submission. We will provide a
skeleton makefile for you, but you are responsible for maintaining it. For a simple project, such as
Project 0, that contains only a single source file, the following makefile will suffice:

SHELL = /bin/sh

ifeqg ($(shell uname -s),Darwin)
CC = cc —-std=gnu99

LDFLAGS = —-framework GLUT -framework OpenGL -framework Foundation
else

CC = gcc —-std=gnu99

ILDFLAGS = —-lglut -1GL -1GLU -1m
endif
projectO: main.c

$(CC) $(CFLAGS) -o project0 main.c $(LDFLAGS)

clean:
rm -rf projectO
This makefile works on both Linux and MacOS X by setting the LDFLAGS make variable based on
the host OS. If you have not used make before, you should take a look at the documentation. Infor-
mation about make is available at www.gnu.org/software/make and online documentation
can be found at www.gnu.org/manual /make/html_chapter/make.html.

Gforge

We are using a new system to keep track of projects called gforge. A server has been set up with
hostname cs237.cs.uchicago.edu. You can access it using your web browser at that address.

Before you can have a project, you need to register yourself as a user. Do this by pointing
your web browser to http://cs237.cs.uchicago.edu and clicking on the link “New Account” on the
top right corner of the page. Follow the directions (you only need to fill in the starred fields)

and submit the form. In a few seconds you should receive an email with a link to confirm your
registration. Click on it and log in and you should have an active account. When this is com-
plete, email me at dmp@cs.uchicago.edu with the account name you just set up. As soon
as I can, I’'ll set up your first project and email you when I do so. It will be called projectOuser,
where user is your gforge username. Future projects will follow the same naming scheme. In
order to be declared a member of the project, you must log in and go to the project’s web page:
http://cs237.cs.uchicago.edu/projects/projectOuser/. There is a link that says *Request to join’. Fol-
low it and click the submit button for the form on the linked page. I will email you when I approve
you for the project and you will then be able to administer your project and use the Subversion
repository.

Using Subversion

Once a project is created for you, it will have a Subversion repository on the server. You are expected
to keep the source code of your projects in the repository. To checkout a copy of a project called
projectOuser, run the following command:

svn checkout svn://cs237.cs.uchicago.edu/projectQuser

On your first checkout, you should be prompted for your password. It will assume you are using
the username of the account executing svn. If your gforge username is different than this name,
just press enter on the password prompt and it will then ask you for your username first and then
your password. If everything checks out, a directory called project Ouser will be created in the
current directory. All the files related to your project should live in this directory.

Now suppose you create a file called main. c in your projectOuser directory. In order for
Subversion to keep track of it, it needs to be added to the repository. You do this using the following
command:

svn add main.c
You should see a message like:
A main.c

This command records the fact that main . c has been added to the repository, but the file will only
be added when you commit your changes. To do so, type the following command:

svn commit

to add the file permanently to the repository. You will be prompted to enter a log message in an
editor. You can avoid editors altogether by typing your log message on the command line with the
-m flag:

svn commit -m "added files"

After you have entered your message, you will see a message like the following:

Adding main.c
Transmitting file data
Committed revision 1.

Changes you make to your files are recorded in the repository every time you do a svn commit.
Before you make changes to your files, you can ensure that you have a current version, by running

svn update. This fact is not of tremendous significance for individual projects, but matters when
more that one person can modify the same files.

Not all the files in your project directory need to be in the repository. For example, you should
not put your executable files in the repository — these can always be recreated (hopefully!) by
compiling the source.

The “svn diff” command is for comparing differences between versions. If no files (or
options) are specified, all working files are compared to their last committed versions, otherwise
only the specified files are compared. There are also flags to compare other versions, see the man
pages or the online manual for details.

Useful resources

There are links to some useful Computer Graphics resources on the course web page at
www.classes.cs.uchicago.edu/archive/2005/£fall/23700/

Information about make is available at www . gnu.org/software/make/ and online docu-
mentation can be found at www .gnu.org/manual /make/html_chapter/make.html.

The Subversion home pageisat http://subversion.tigris.org/. Official documen-
tationis at http://svnbook.red-bean.com/.

