
CMCS 22100/32100 — Programming Languages
Midterm Examination Solution
November 12, 2004

Question 1 Commutativity of substitution (25 points)
Show that for any expressions e, e1, and e2 of the Arith+Let language, if x1 6∈ FV(e2) and x2 6∈
FV(e1), then

{e1/x1}({e2/x2}e) = {e2/x2}({e1/x1}e) (1)

The abstract syntax of Arith+Let is given by:

e ::= num[n] | var(x) |
plus(e1, e2) | times(e1, e2) |
let(e1, x.e2)

Solution. We prove (1) by induction on the structure of the term e. Note that we implicitly assume
that x1 6= x2, since the equation is in fact not in general true if x1 = x2 (what is a counterexample?).

Case e = num[n]. Here {e1/x1}e = e and {e1/x2}e = e, so

{e1/x1}({e2/x2}e) = {e1/x1}e = e = {e2/x2}e = {e2/x2}({e1/x1}e)

Case e = var(x). If x 6= x1 and x 6= x2, then {e1/x1}e = e and {e1/x2}e = e, so both sides of
(1) are equal to e as in the first case.

If x = x1, then {e1/x1}e = e1 and {e2/x2}e = e, so

{e1/x1}({e2/x2}e) = {e1/x1}e = e1 (2)

and for the left hand side of (1) we have

{e2/x2}({e1/x1}e) = {e2/x2}e1 (3)

But since x2 is not free in e1, we have {e2/x2}e1 = e1 by the following Lemma. Thus both sides
of (1) are equal to e1.

Lemma 1.1: If x 6∈ FV (e) then {e′/x}e = e.
Proof: This is another straightforward induction on the structure of e similar to, but
simpler than, the current proof. It is left as an exercise.

Finally, if x = x2, the reasoning is similar, with both sides being equal to e2 in this case.

Case e = plus(e3, e4). By induction, we have

{e1/x1}({e2/x2}e3) = {e2/x2}({e1/x1}e3) (4)

{e1/x1}({e2/x2}e4) = {e2/x2}({e1/x1}e4) (5)

and therefore

{e1/x1}({e2/x2}plus(e3, e4)) = {e1/x1}(plus({e2/x2}e3, {e2/x2}e4))
= plus({e1/x1}({e2/x2}e3, {e1/x1}({e2/x2}e4))
= plus({e2/x2}({e1/x1}e3, {e2/x2}({e1/x1}e4)) by (4, 5)
= plus({e2/x2}({e1/x1}e3, {e2/x2}({e1/x1}e4))
= {e2/x2}(plus({e1/x1}e3, {e1/x1}e4))
= {e2/x2}({e1/x1}plus(e3, e4))

Case e = ×(e3, e4). The proof for this case is exactly analagous to that for the previous case,
mutatis mutandis.

Case e = let(e3, y.e4). Here by alpha conversion we can assume that the bound variable y is
distinct from x1 and x2 and is not free in any of e1, e2, e3. We have

{e1/x1}({e2/x2}e = {e1/x1}(let({e2/x2}e3, {e2/x2}(y.e4)))
= let({e1/x1}({e2/x2}e3), {e1/x1}({e2/x2}(y.e4)))
= let({e1/x1}({e2/x2}e3), y.({e1/x1}({e2/x2}e4))) (6)

By induction, we have

{e1/x1}({e2/x2}e3) = {e2/x2}({e1/x1}e3) (7)

{e1/x1}({e2/x2}e4) = {e2/x2}({e1/x1}e4) (8)

So we have

let({e1/x1}({e2/x2}e3), y.({e1/x1}({e2/x2}e4)))
= let({e2/x2}({e1/x1}e3), y.({e2/x2}({e1/x1}e4))) by (7, 8)
= . . .

= {e2/x2}({e1/x1}let(e3, y.e4) (9)

Finally, equations (6) and (9) imply (1).

Note: The considerable notational clutter of this proof could have been reduced if we had given
names to the two substitutions, say σ1 = {e1/x1} and σ2 = ({e2/x2}. Then (7), for instance, could
be more concisely expressed as:

σ1(σ2 e3) = σ2(σ1 e3)

2

Question 2 Call-by-Name MinML (30 points)
The Call-by-Name (CBN) version of MinML differs from the one presented by Harper and dis-
cussed in class in one way: in function applications the function arguments are “passed” before
they are evaluated, not after evaluation as in the normal, Call-by-Value (CBV), MinML. The primi-
tive operator expressions like +(e1, e2) still need to have their arguments evaluated before they can
be reduced.

(a) (10 points): Give any new or changed rules for small-step evaluation (7→) for the CBN MinML.

Solution: We revise rule (9.16) for CBN semantics.

(v = fun f(x : τ1) : τ2 is e)
apply(v, e1) 7→ {v, e1/f, x}e

(9.16− CBN)

We also remove the search rule (9.21) from the system because under CBN we no longer need to
evaluate the argument before β-reduction (i.e., before rule (9.16-CBN) can be applied).

(b) (5 points): Do the typing rules for CBN MinML differ from those of the normal CBV MinML?
If so, show the altered typing rules.

Solution: No, the typing rules do not change. The fact that the argument expression is substituted
before rather than after its evaluation does not change the requirement that its type match the domain
type of the function.

(c) (15 points): Discuss how the change from CBV to CBN affects the proofs of the Preservation
and Progress Theorems (i.e. which cases change, and how?).

Solution:

Preservation: Γ ` e : τ, e 7→ e′ ⇒ Γ ` e′ : τ .

The case for apply changes slightly to reflect the new (9.16-CBN) transition rule: the Sub-
stitution Lemma must now be used on {v, e1/f, x}e instead of {v, v1/f, x}e.

Progress: Γ ` e : τ ⇒ e is a value or ∃e′ : e 7→ e′.

In the case where Γ ` e : τ by (9.12) and the subcase where e = apply(v1, e2) and v1 is a
value, ∃e′. e 7→ e′ by (9.16-CBN) regardless of whether e2 is a value, so we do not have to
consider alternate subcases where e2 is a value or makes a transition.

(d) (Bonus question, 10 points): Give an example of an expression whose evaluation terminates in
the CBN semantics, but does not terminate in the CBV semantics.

Solution: We can solve this problem in two steps. First, we need to create an expression that does
not terminate under CBV. We do this using an infinite recursion:

e = apply((fun g (y : int) : int is apply(g, y)), num[0])

Second, we define a function which does not actually reference its argument variable in its body,
and apply it to e. In a CBV regime, we always try to fully evaluate the argument of any function
application, so if the argument expression doesn’t terminate neither does the function application.
On the other hand, in CBN, if the argument doesn’t need to be evaluated after it has been passed
to the function, because the argument variable is not mentioned, the application will converge. So
here is an application expression that will diverge under CBV but terminate under CBN:

apply((fun f (x : int) : int is num[1]), e)

3

Question 3 Evaluation with Free Variables (25 points)
The small-step evaluation semantics 7→ for MinML can be considered to be defined even for open
expressions (expressions containing free variables, i.e. expressions e such that FV(e) 6= ∅). There
are no transitions for variables, so expressions of the form x where x is a variable are stuck. We will
assume here that all function expressions are values, even if they are not closed.

(a) (20 points) Prove that for any expressions e and e′ (possibly open)

e 7→ e′ ⇒ FV(e′) ⊆ FV(e) (10)

(i.e., transition steps introduce no new free variables).

Solution: We prove (10) by induction on the rules for deriving e 7→ e′.

Case: e 7→ e′ by Rule (9.13). In this case e = +(m,n) and e′ = p where p = m + n. Since e′

is a number, FV (e′) = ∅, which is a subset of any set, and so FV (e′) ⊆ FV (e). The cases for
instruction rules for other primitive operators are similar.

Case: e 7→ e′ by Rule (9.14). Here e = if true then e1 else e2 and e′ = e1, and we have:

FV (e′) = FV (e1) ⊆ FV (e1) ∪ FV (e2) = FV (e)

Case: e 7→ e′ by Rule (9.15). Similar to (9.14).

Case: e 7→ e′ by Rule (9.16). So e = apply(v1, v2) where v1 = fun f(x : τ1) : τ2 is e1, and
e1 = {v1, v2/f, x}e1. We have

FV (e′) = FV (v1) ∪ FV (v2) where FV (v1) = FV (e1)− {f, x} (11)

To give a bound on the free variable set for e′, we need the following Lemma relating free variables
and substitution.

Lemma 3.1: For any term e and substitution σ,

FV (σ(e)) ⊆

 ⋃
x∈dom(σ)

FV (σ(x))

 ∪ (FV (e)− dom(σ)) (12)

Where dom(σ) is the domain of the substitution σ, i.e., the set of variables that it
replaces. The proof is by structural induction on e.

So, by applying Lemma 3.1 to e1, we have:

FV (e′) ⊆ FV (v1) ∪ FV (v2) ∪ (FV (e1)− {f, x})
= FV (v1) ∪ FV (v2)
= FV (e)

Case: e 7→ e′ by Rule (9.17). Here e = +(e1, e2) and e′ = +(e′1, e2) where e1 7→ e′1. By
induction, we can assume FV (e′1) ⊆ FV (e1). Hence

FV (e′) = FV (e′1) ∪ FV (e2)
⊆ FV (e1) ∪ FV (e2)
= FV (e)

4

The proofs for rules (9.18) through (9.21) are similar to that for (9.17).

(b) (5 points) Give an example of an open expression e such that e 7→∗ v for some closed value
expression v.

Question 4 Eta-equivalence (20 points)
Suppose ` e : t → t′ in MinML and define

e′ = fun f(x : t) : t′ is apply(e, x)

where f and x are fresh bound variables. The expression e′ is called an eta-expansion of e in lambda
calculus terminology.

Give an informal argument showing that e and e′ are equivalent in the sense that for any expression
e0 such that ` e0 : t, apply(e, e0) and apply(e′, e0) evaluate to the same result (i.e. if either
evaluates to a value v, then both evaluate to v, and if either fails to terminate, then both fail to
terminate).

Solution: We need to show that apply(e, e0)
∗7→ v ⇔ apply(e′, e0)

∗7→ v and apply(e, e0) fails
to terminate ⇔ apply(e′, e0) fails to terminate.

Two remarks about common mistakes:

1. Although type safety guarantees that a well-typed term will not be stuck, it does not make
any guarantees about termination, i.e., well-typed terms can loop forever. Thus, showing that
both terms are well-typed does not prove termination.

2. Remember that the evaluation strategy in MinML is CBV. Thus, in general, function applica-
tion (e1e2) happens in three stages:

(a) Evaluate e1 to a value v1 (v1 will be a function if the application is well typed) using
zero or more applications of rule (9.20).

(b) Evaluate e2 to a value v2 (v2 can be any value of the appropriate type) using zero or
more applications of rule (9.21).

(c) Substitute v2 into the body of v1 provided that v1 is indeed a function using rule (9.16).

We cannot skip any of these stages except where the subterm in question is already a value,
as is the case with e′ = fun f (x : τ) : τ ′ is apply(e, x). Recall that (9.16) does not even
fire until both the function and the argument are fully evaluated. Since e and e0 are arbitrary
expressions they may need to be evaluated using (9.21) before β-reduction (9.16).

The evaluation of apply(e′, e0) proceeds as follows:

apply(e′, e0)
∗7→ apply(e′, v0) by applications of (9.21) (13)

7→ apply(e, v0) by (9.16) (14)
∗7→ apply(v, v0) by applications of (9.20) (15)

7→ e′′ by (9.16) (16)
∗7→ vf (17)

5

while the evaluation of apply(e, e0) goes like this:

apply(e, e0)
∗7→ apply(v, e0) by (9.20) (18)
∗7→ apply(v, v0) by (9.21) (19)

7→ e′′ by (9.16) (20)
∗7→ vf (21)

where e′′ is {v, v0/g, y}e1 assuming v = fun g (y : τ1) : τ2 is e1.

Notice that the two expressions are not directly equivalent. In general, it takes an arbitrary number
of steps to get to a point of convergence, namely the expression apply(v, v0). These intermediate
sequences of steps may also fail to terminate; every time we use the search rules (9.20) or (9.21)
to fully evaluate a subterm we may have nontermination because evaluating that subterm may loop
forever. Thus the first reduction sequence may fail to terminate at (13) because evaluation of e0 does
not terminate, or at (15) because evaluation of e does not terminate, or at (17) because e′′ fails to
terminate. The second reduction will also fail to terminate for the same reasons: at (19) if e0 does
not terminate, at (18) if e does not terminate, or at (21) if e′′ does not terminate.

Thus it is clear that apply(e′, e0) and apply(e, e0) will either both terminate, yielding the same
value vf , or they will both fail to terminate for one of the three reasons cited above.

6

