
CS 51024 – Stock Trading Simulation Project

 1 of 1

Project Description
Proposal: a trading simulation game, using a live feed, database
storage and connectivity, and distributed objects. We will have a trading
engine which maintains an order book, matches trades and serves
market data. Users can buy or sell shares of stock from other
participants via a simple trading screen.

We will implement the system to run a market for a single stock. The
market prices are fully defined by the orders in the system, so this
market won’t have to know anything about a particular stock in order to
operate.

The objects in the system--

MarketServer: it manages the order book, generates market data
and fill information.

Database: it maintains a list of executed transactions (not orders).
Authorized users can be set up in the database ahead of time –
you don’t need to implement tools to administer the database.

Client: thin clients that provide a user interface to enter orders
and display market data in real time. There can be optional
automated trading algorithms that can be switched on/off which
listen to market data and generate orders and receive trades.

The specification for this project is remarkably similar to the Penn-
Lehman Automated Trading Project, which you should check out as
background for this project. This project differs from PLAT in a few
important ways:

1. We will not try to integrate our prices/orders into a real market like
PLAT did with Island ECN.

2. We will only implement Limit Orders – we will not implement
Market Orders. Here is a good description of various order types.

3. Communication between users and the market will be done with a
tag-value based protocol. This will look like a stripped down
version of the FIX protocol, which is a securities industry standard
protocol for order management. Here is a pretty good overview
of the FIX protocol.

CS 51024 – Stock Trading Simulation Project

 2 of 2

Highlights of the PLAT site:

o Nice overview of the whole project (includes a description of
how the order book matches trades – very important)

o More detailed discussion of the project – there is a lot of info
in the back about performance of the traders which you can
ignore.

If you are curious about how the equity market works and want to check
out a real market simulator, there are a few pretty good sites – many
offer free access so you can try them out:

o StockQuest – free, targeted to students and educators. Good
educational info in the site as well.

o The Stock Market Game – another site targeted to
students/educators.

o VirtualStockExchange – geared more towards people who
know a bit about the market and trading. More sophisticated
system and tools, affiliated with CBS MarketWatch.

o Hollywood Stock Exchange – yes, you can trade anything.
Pretty slick implementation of a market.

Ongoing Discussion
We are setting up a mail list for the project. This is a complex system to
describe, and implementation is even more complex. I’ll work to keep it as
simple as possible. We will have a couple of whiteboard sessions on this
(time/date tba) and keep a mail list up for day-to-day stuff. The mail list is
trading-51024@cs.uchicago.edu. I encourage collaboration on the
understanding of the problem to be solved by using the mail list to ask questions
and provide solutions.

How we will assess your implementation:
1. Live demo of the story set.
2. Slugfest – set two trading agents against each other (user1

enters an order, the user2 immediately hits the outstanding
order). See how many orders the system can process per
second, the average response time and the standard deviation of
response time.

CS 51024 – Stock Trading Simulation Project

 3 of 3

3. Bonus Round: Standards test – point your trading agents at
someone else’s implementation of the MarketServer. If we got
the protocol spec right, and you implemented it right, it should
work.

4. Extra Credit – note that none of the story sets include the use of
the cancel message. Implementation of cancel, on both the
server and client side is extra credit.

Design Notes
o Clients must wait for market to acknowledge their order before

subsequent action (cancel, another order,…)
o If the engine crashes, it comes back up clean – persisting

outstanding orders is not necessary
o It is possible to enter an order that trades through the book –

meaning that it should execute through more than the best
price level. To simplify things, we will not allow this situation:
simply NACK this order with reason=”trade through not
allowed”.

o Trading with yourself is called a ‘wash’ – this type of trading
has gotten justifiably bad press recently. You should check for
this condition and NACK any order that would cause this to
happen.

CS 51024 – Stock Trading Simulation Project

 4 of 4

Protocol Specification
General Message Sequence as initiated by a Client sending an order:

1. Limit order sent to system by Client
2. ACK/NACK sent to originator of order by MarketServer

If the MarketServer ACKs the message, the Client is assured the order is now in the order book and can be
executed at any time. A NACK means the MarketServer did not accept the order and it is not in the book and will
never be executed unless the Client successfully resubmits it (and gets an ACK)
An ACK will return the ID that the MarketServer uses to identify the order (MarketServer does NOT use the
ClientID, as it is not guaranteed to be unique). The MarketServer ID must be used to reference the order if you
send a Cancel message.

3. MarketServer processes order and check for match(es)
The MarketServer goes through a ‘match process’ where the new inbound order is checked against the current
working order book for potential matches. If such a match exists, then this order is termed the aggressor. There is
a good discussion on FIFO Matching in this informational document.
if (match occurs)
a) send FILL messages to owners of crossed orders

This message informs the buyers/sellers of their committed transaction. It gives them the price and quantity
they executed. If the filled quantity is equal to their original order quantity, then they no longer have an order in
the system. If the filled quantity is less than the original order quantity, the original order is left on the book with
the original price and the quantity set to the remainder: (originalQuantity – filledQuantity).
Note also that FILL messages can go to more than 2 Clients (client1 and client2) – for instance there might be
two clients both with orders in the system to buy 10 shares at a price of $100. If an order is received by the
MarketServer from client3 to sell 20 shares at $100, then 3 FILL messages are sent:

CS 51024 – Stock Trading Simulation Project

 5 of 5

MktServer->Client1 buys 10 at $100
MktServer->Client2 buys 10 at $100
MktServer->Client3 sells 20 at $100

The MarketServer needs to archive all matches to a trade history database

b) send LAST message to all market data listeners
The LAST message informs all market participants that a trade has just occurred. We send the price and
quantity, but do not reveal who were the parties to the trade.

The MarketServer needs to archive all LAST messages to a time-and-sales database.

c) send BOOK message to all market data listeners
If a match occurs then the book has somehow changed – send out the top 3 prices and aggregate quantities at
each price level to all market participants. See section on Market Data for more in-depth discussion of this
topic.

else if (top 3 of book changed in price or qty but no match)
d) send BOOK message to all market data listeners

If a match occurs then the book has somehow changed – send out the top 3 prices and aggregate quantities at
each price level to all market participants.

else
e) no external messages

If the top 3 prices/aggregate quantities in the book have not changed as a result of the order just processed,
then there is no need to push market data out to the market participants.

CS 51024 – Stock Trading Simulation Project

 6 of 6

General Message Sequence as initiated by a Client canceling an order:
4. Cancel message sent to MarketServer by Client

Client will initiate a cancel with the mktID provided by the MarketServer when it ACKed the original limit order.
MarketServer will ensure that this connection was the originator of the order and cancel it from the book

5. ACK/NACK sent to originator of Cancel by MarketServer
If the MarketServer ACKs the message, the Client is assured the order is now cancelled out of the order book and
cannot be executed. A NACK means the MarketServer did not accept the cancel and it the original order may still
be in the order book (see reason for explanation – there are some error conditions where the order will still be on
the books, others where it will not [order not found, for instance]) . If the book structure changes as a result of this
cancel, then a new market data (BOOK) message will be sent.

CS 51024 – Stock Trading Simulation Project

 7 of 7

Market Data Message
Let’s say we have the order book depicted in the diagram to
the right – In order to generate our market data message we
must determine the aggregate quantity at each price level –
which is simply the sum of quantities for orders at a give
price level. Let’s consider what will go into the BOOK
message, represented as the yellow portion of the diagram.
In this example we display the book with bids on the left
(positive quantities, the ‘best’ bid has the highest price) and
offers on the right (negative quantities, the ‘best’ offer has
the lowest price). We have three unique bids based on price
and two unique offers. Our BOOK message will therefore
have 5 price/quantity pairs representing the 5 price levels.
If a particular price has zero quantity, it is not reported and
does not count as a price level.
Note that in the BOOK message we do NOT report who has
the orders in the system – the identities are kept secret.

Let’s say we just received the 99 bid for 25 shares: our BOOK message will look like this:
BOOK mktTime 11:43:26.34 qty 25 price 100 qty 25 price 99 qty 70 price 98 qty -45 price 101 qty -40 price 102

qty price qty
Client1

-40
102

11:43:21.03
Client1 Client2

-25 -20
101 101

11:43:14.37 11:43:21.25
who Client1
qty 25
price 100
timestamp 11:43:24.03

Client2
25
99

11:43:26.34
Client1 Client2

25 45
100 98

11:43:18.22 11:43:15.03

BOOK message

-45101.00

-40102.00

100.00

99.00

98.00

25

25

70

CS 51024 – Stock Trading Simulation Project

 8 of 8

Sample Message tag/value pairs
>hello clientID bob0001 clientName bob clientTime 11:23:45.81
<ACK clientID bob0001 mktTime 11:23:45.92
<NACK clientID bob0001 mktTime 11:23:45.92 reason text

this sequence is the initiation from the Client and either the ACK or NACK from MarketServer (it will send either ACK or NACK,
never both) We can get a good idea of clock differences between Client and MarketServer from this sequence.

>limit clientID bob0002 qty 100 price 60.51 clientTime 11:23:47.02
<ACK clientID bob0002 mktID mkt1000 mktTime 11:23:47.09
<NACK clientID bob0002 mktTime 11:23:47.09 reason text

this sequence is an order being sent from the Client and either the ACK or NACK from MarketServer. We need to save the mktID
as this is the reference we need to send to MarketServer if we want to cancel the order later. Note we return MarketServer
timestamps here so we can check latencies between Client and MarketServer if we are so inclined. Remember that we cannot send
another order until we have received an ACK from the last message.

<FILL mktID mkt1000 mktTime 11:23:47.11 qty 100 price 60.51

Here is a fill message – MarketServer gives me the ID of the original order (MarketServer internal ID, not the ClientID) – plus
the quantity and price of the fill.

<LAST mktTime 11:23:47.11 qty 100 price 60.51 totalQty 50000 totalMsgs 467 totalTx 17

The LAST message goes out to all market participants. Included at the end of the message are some overall market statistics
that are updated with every trade:
o totalQty total number of shares traded during this session
o totalMsgs total number of messages from clients (hello, limit,cancel)
o totalTx total number of FILL messages sent from MarketServer
o

>cancel mktID mkt1000 clientTime 11:23:47.87
<ACK mktID mkt1000 mktTime 11:23:47.99
<NACK mktID mkt1000 mktTime 11:23:47.99 reason text

Cancel sequence – note again that we send the MarketServer ID to access the trade. The MarketServer will check to be sure that
the ID you are canceling is actually your order.

<BOOK mktTime 11:23:47.11 qty 100 price 60.51 [up to 5 price/qty pairs per side]
BOOK message give you the current timestamp of MarketServer, and up to 6 price/quantity pairs which represent the top 3
aggregate bids and top 3 aggregate offers. (interesting note, at the CME, we show the top 5 bids and offers)

Rules for Client/Server interaction, message traffic etc.

1. Client Session begins with hello
2. All client side orders are guaranteed to be responded to with ACK/NACK. No response means market is down.
3. FILL/LAST/BOOK are sent to clients on unsolicited basis.
4. MarketServer processes one message at a time, performs all responses to appropriate Clients, then begins processing the next

inbound client message.

CS 51024 – Stock Trading Simulation Project

 9 of 9

Story Set
Story #1

qty price qty
who Client1
qty 25
price 100
timestamp 11:43:24.03

qty price qty
Client1 Client1

25 -25
100 100

11:43:24.03 11:43:14.37

qty price qty

-25

Client1 initiates order to buy 25 shares at a price of 100

Client 2, after receiving the BOOK message which
describes the bid, sends in an offer for 25 shares at a
price of 100. This order will immediately cross with the
bid and a transaction will occurr. FILL messages are
sent to Client1, Client2, LAST messages are sent to
everyone showing 25 shares traded at a price of 100

Since the quantities of 25 matched, we have no
remaining quantity and therefore both orders are now
removed from the book. The subsequent BOOK
message reflects that there are no outstanding orders.

Market Server

25 100.00

BOOK message

BOOK message

100.0025

CS 51024 – Stock Trading Simulation Project

 10 of 10

Story 2

qty price qty
who Client1
qty 25
price 100
timestamp 11:43:24.03

Client2
25
99

11:43:26.34

qty price qty
Client1 Client3

25 -35
100 100

11:43:24.03 11:43:27.03
Client2

25
99

11:43:26.34

qty price qty
Client3

-10
100

11:43:27.03
Client2

25
99

11:43:26.34

25 99.00

We begin with 2 orders on the book as depicted

Client3 then sends an order to sell 35@100. This
will cross with the bid for 25@100. FILL
messages go to Client1 and Client3, LAST
messages go to all.

BOOK message reflects the remaining quantity
from the original order (-35@100) on the offer
side, there is no bid at 100; the bid for 25 shares
at 99 remains in the book and is reflected in the
BOOK message.

BOOK message

0 0.00 -10

Market Server

25 100.00

25 99.00

-35

100.00

99.00

25

25

BOOK message

CS 51024 – Stock Trading Simulation Project

 11 of 11

Story 3

qty price qty
who Client1
qty 25
price 100
timestamp 11:43:24.03

qty price qty
Client2 Client1

25 25
100 100

11:43:24.05 11:43:24.03

qty price qty
Client2 Client1 Client3

25 25 -35
100 100 101

11:43:24.05 11:43:24.03 11:43:25.37

qty price qty
Client2

15
100

11:43:24.05

Client1 initiates order to buy 25 shares at a price of 100

Client2 sends an order to buy 25 shares at a price of 100.
Note this order arrives after the order from Client1, so it is
2nd in line to be filled. The BOOK message reflects a total
of 50 shares bid at a price of 100

Client3 then sends in an offer to sell 35 shares at 100. This
will cross with all of Client1's order and 10 shares of
Client2's order. Client1 gets a FILL message for 25@100
(and knows they have no remaining quantity in the book),
Client2 gets a FILL message for 10@100, so they know
they still have a bid in for 15@100. LAST message sent to
all with 35@100

The subsequent BOOK message reflects the remaining bid
for 15 shares at a price of 100.

BOOK message

15 100.00 0

Market Server

50 100.00 -35

0

BOOK message

50 100.00 0

BOOK message

100.0025

CS 51024 – Stock Trading Simulation Project

 12 of 12

Example Trading Screen
Note: this is an example layout and functionality – there are many other ways to do this,
it’s up to you!

Our screen is started with command line args to point to the MarketServer, and to set our
identity for the session.

The screen implements a simple order entry facility
(quantity,price, SEND)

The BOOK section handles BOOK messages –
remember these arrive unsolicited in real time.

The Orders section keeps track of all outstanding
orders for this Client. If orders are filled, they
come off the screen. If they are partially filled,
their outstanding quantities are updated.

The Trades section simply logs trades which have
been reported from MarketServer.

The Error Msgs section logs the original message
and the NACK that was received from
MarketServer.

AutoBID – starts the automatic sending of orders
to MarketServer. Remember that we expect this bid to be hit, so you should probably
wait until you see the correct LAST before sending another bid!

AutoASK – watches the market until it sees a prescribed bid (you can hardcode whatever
price/qty you want here). We then send offers in to hit bids.

End Session – kills the client cleanly.

BID qty Price ASK qty
102 30
101 20

25 100
30 99
25 98
25 98

bobbobMy ID

Quantity Price Send

BOOK last update: 23:45:04.22

BUY 5 @ 100 mktID=31
SELL 10 @ 101 mktID=34

My Orders last update: 23:45:04.22

Bought 10 @ 100 mktTime= 23:45:01.02

My Trades last update: 23:45:04.22

Error Msgs last update: 23:45:04.22
�����
�����

����
����

����
����

LAST [23:45:09.15]: 25@100 Total Qty=300 TotalMsgs=34 TotalTx=5

AutoBID End SessionAutoASK

