
Lecture 10

Liveness Analysis

Liveness

In our intermediate representation (IR), we assume we have an
unlimited number of temporaries (virtual registers).

In the PowerPC architecture, we have 32 general purpose
registers (at most 30 available).

How do we fit all the temporaries into the limited set of real
registers?

Question: how many temps are really “in use” at the same time?

If the maximum number of temps in use at any time is <= 30,
then they can fit into the registers.

When the maximum number exceeds 30, the excess has to be
spilled to memory (space reserved in the stack frame). Which
temps should be spilled?

Liveness

Definition: A variable is live if it holds a value that will/might be
used in the future.

The representation of the program that we use for liveness
analysis (determining which variables are live at each point in a
program), is a control flow graph.

The nodes in a control flow graph are basic statements
(instructions). There is an edge from statement x to statement y
if x can be immediately followed by y (control flows from x to y).

Control Flow Graph

 a ! 0

L
1
: b ! a + 1

 c ! c + b

 a ! b + 2

 if a < N goto L
1

 return c

a ! 0

b ! a + 1

c ! c + b

a ! b + 2

a < N

return c

1

2

3

4

5

6

Control flow graph of a program

Live Ranges

Live ranges of a Live ranges of cLive ranges of b

a ! 0

b ! a + 1

c ! c + b

a ! b + 2

a < N

return c

1

2

3

4

5

6

a ! 0

b ! a + 1

c ! c + b

a ! b + 2

a < N

return c

1

2

3

4

5

6

a ! 0

b ! a + 1

c ! c + b

a ! b + 2

a < N

return c

1

2

3

4

5

6

Use/Def

c ! c + b

use [n] = { c, b }

def [n] = { c }

n

Live In - Live Out

Definition: a variable (temp) a is live-in at node n if it is used at
n (a ε use[n]), or if there is a path from n to a node that uses a
that does not contain a definition of (assignment to) a. We write
a ε in[n].

Definition: a variable a is live-out at node n if it is live-in at one
of the successors of n. We write a ε out[n].

The sets in[n] and out[n] satisfy the equations

in[n] = use[n] ∪ (out[n] - def[n])

out[n] = ∪ { in[s] | s ε succ[n] }

Calculation of in[n], out[n]

for each n

in[n] := {}; out[n] = {}

repeat

for each n
in’[n] := in[n]; out’[n] := out[n]
in[n] := use[n] ∪ (out[n] - def[n])
out[n] := ∪ {in[s] | s ε succ[n]}

until in’[n] = in[n] and out’[n] = out[n]
for all n

Fixpoint calculation for two families of sets: in[n] and out[n]

Calculation of in[n], out[n]

for each n

in[n] := {}; out[n] = {}

repeat

for each n
in’[n] := in[n]; out’[n] := out[n]
in[n] := use[n] ∪ (out[n] - def[n])
out[n] := ∪ {in[s] | s ε succ[n]}

until in’[n] - in[n] and out’[n] = out[n]
for all n

a ! 0

b ! a + 1

c ! c + b

a ! b + 2

a < N

return c

1

2

3

4

5

6

Iterative Calculation of in, out

iterations: 0 1 2 3

node use def out in out in out in out in

6 c ∅ ∅ ∅ ∅ c ∅ c ∅ c

5 a ∅ ∅ ∅ c ac ac ac ac ac

4 b a ∅ ∅ ac bc ac bc ac bc

3 bc c ∅ ∅ bc bc bc bc bc bc

2 a b ∅ ∅ bc ac bc ac bc ac

1 ∅ a ∅ ∅ ac c ac c ac c

Iterative Calculation of in, out

iterations: 0 1 2 3

node use def out in out in out in out in

6 c ∅ ∅ ∅ ∅ c ∅ c ∅ c

5 a ∅ ∅ ∅ c ac ac ac ac ac

4 b a ∅ ∅ ac bc ac bc ac bc

3 bc c ∅ ∅ bc bc bc bc bc bc

2 a b ∅ ∅ bc ac bc ac bc ac

1 ∅ a ∅ ∅ ac c ac c ac c

in(6) = use(6) ∪ (out(6) - def(6))
 = {c} ∪ (∅ - ∅) = {c}

Iterative Calculation of in, out

iterations: 0 1 2 3

node use def out in out in out in out in

6 c ∅ ∅ ∅ ∅ c ∅ c ∅ c

5 a ∅ ∅ ∅ c ac ac ac ac ac

4 b a ∅ ∅ ac bc ac bc ac bc

3 bc c ∅ ∅ bc bc bc bc bc bc

2 a b ∅ ∅ bc ac bc ac bc ac

1 ∅ a ∅ ∅ ac c ac c ac c

succ(5) = {2,6}
out(5) = in(2) ∪ in(6)
 = ∅ ∪ {c} = {c}

Iterative Calculation of in, out

iterations: 0 1 2 3

node use def out in out in out in out in

6 c ∅ ∅ ∅ ∅ c ∅ c ∅ c

5 a ∅ ∅ ∅ c ac ac ac ac ac

4 b a ∅ ∅ ac bc ac bc ac bc

3 bc c ∅ ∅ bc bc bc bc bc bc

2 a b ∅ ∅ bc ac bc ac bc ac

1 ∅ a ∅ ∅ ac c ac c ac c

succ(5) = {2,6}
in(5) = use(5) ∪ (out(5) - def(5))
 = {a} ∪ ({c} - ∅) = {a,c}

Interference

Two temps interfere if they are live at the same time.
Interfering temps cannot be assigned to the same register.

The interference relation can be represented by an
interference graph in which nodes correspond to temps and
edges connect interfering temps.

a

c

b

The interference graph
for our example.

