
CMSC 23700
Fall 2004

Introduction to Computer Graphics Project 2(b)
November 16

Terrain rendering (Part b)
Due: Monday, November 29

1 Overview

The goal of a terrain rendering algorithm is to render a triangle mesh that models a given heightfield.
The naive approach of part-a is to draw the complete triangle mesh, which requires rendering very
large numbers of triangles (e.g., a 1024 × 1024 heightfield has 2 million triangles). Even with
view-frustum culling, the number of triangles is substantial. Since rendering such large numbers
of triangles in real-time is impractical, we will use acontinuous level-of-detail(CLOD) scheme in
Part-b to reduce the number of triangles rendered per frame. Many techniques have been developed
for managing level-of-detail when rendering terrain. In the second stage of the project, you will
replace the simple mesh renderer of part-a with thesplit-onlyvariant of ROAM algorithm. You will
also add lighting and fog to the renderer.

1.1 Lighting

For this part, we will add a single directional light (the sun) to the scene, which is specified in the
map file. Adding lighting means that you will need to specify normals for your triangles as you
render them.

1.2 Fog

Fog adds realism to outdoor scenes. It can also provide a way to reduce the amount of rendering by
allowing the far plane to be set closer to the view. The map file format has been extended to include
a specification of the fog density and color. We will use theGL_EXPfog mode for this project, but
feel free to experiment with other settings

1.3 The controls

The controls are enhanced to support fog and dynamically changing the level of detail.

UP ARROW accelerate
DOWN ARROW brake
LEFT ARROW turn left

RIGHT ARROW turn right
f toggle fog
l toggle lighting
w toggle wireframe mode
+ increase level of detail (by

√
2)

- decrease level of detail (by
√

2)
q quit the viewer

1.4 The input format

For this part, the input format has been changed to accommodate lighting and fog parameters. The
following fields have been added to theMap_t structure to hold these values:

typedef struct {
...

Vec3_t sunDir; /* direction of sun light */
RGB_t sunColor; /* color of sun */
float fogDensity; /* fog density parameter */
RGB_t fogColor; /* fog color */

...
} Map_t;

2 ROAM

The ROAM algorithm is organized around a dynamic representation of triangle meshes calledtrian-
gle binary trees[DWS+97]. Figure 1 gives an example of a tree and Figure 2 shows the correspond-
ing levels of triangulation. In the split-only version of this algorithm, we compute a new tesselation

Figure 1: Binary triangle tree

2

Level 0 Level 1

Level 2 Level 3

Figure 2: Binary triangle tree levels

of the heightfield each frame by starting with the two triangles that cover the whole heightfield and
then refining the mesh. We assign triangles a priority based on the benefit of refining them (e.g., er-
ror metrics). Each triangle in the mesh has three neighbors (except for those triangles on the border)
as is show in Figure 3.

As can be seen from these figures, constructing a binary triangle tree can be done as a recursive
splitting procedure. The trick is that we only want to split a triangle if the resulting mesh provides
a visibly more accurate approximation of the height field. Thus, we modify the recursive splitting
procedure to split the triangle with the highest priority, where priorities are a measure of the visual
effect of not splitting. We use a limit of the number of triangles in the mesh to control the amount
of rendering work we do. Thus, the psuedocode for the tesselation phase is

initialize the mesh to top two triangles
while (size of mesh < limit) {

split highest priority triangle
}

Splitting a triangle requires splitting the triangle’s base neighbor (otherwise a T-junction results),
but it may also presplitting the neighbor, when it is at a higher-level in the binary triangle tree.
Figure 4 shows this situation.

2.1 Hints

You can adjust the priority of triangles to eliminate detail where it is not needed and to enhance
detail where it is needed. For example, triangles that lie wholly outside the view frustum should
have minimum priority, while the triangle containing the vehicle should have maximum priority.

Your program will need several distinct, but related data structures. You start with the heightfield
that is the input data. You will need to compute avariance treethat contains the world-space
variance information, a representation of the triangle mesh, and a priority queue for ordering splits.
A strict priority queue is both not necessary and not efficient enough. Instead, use some number of
priority buckets (think radix sort) to get constant-time insertions and deletions. It is also useful to

3

Left

neighbor

Right

neighbor

Base neighbor

Left

child

Right

child

Figure 3: Triangle neighbors

have the bintree triangles down to the mesh level.

3 Requirements

Part-b of the project is due at 9pm on Monday, November 29. Your final version must be checked
into your CVS repository at that time. You should set the vehicle’s initial position as before and set
the initial triangle budget to 10,000.

4 Document history

Nov. 16 Original version.

References

[DWS+97] Mark Duchaineau, Murray Wolinsky, David E. Sigeti, Mark C. Miller, Charles Aldrich,
and Mark B. Mineev-Weinstein. ROAMing terrain: Real-time optimally adapting
meshes. InIEEE Visualization, pages 81–88, 1997.

4

Desired split

T-Junction

Split causes

T-junction

Forcing splits

eliminates T-Junction

Figure 4: Forcing splits

5

