
CMSC 23700
Fall 2004

Introduction to Computer Graphics Project 2(a)
November 4

Terrain rendering (Part a)
Due: Monday, November 15

1 The problem

For this project your task is to implement a simulator for the next generation of off-road vehicles:
thesports utility hovercraft(SUH). This program will read in terrain height and texture information
and render the view from a simulated vehicle. The terrain height data is given as a square array of
16-bit height samples, which define a grid (or heightfield). This project is divided into three stages.
In the first, you will implement a basic terrain renderer and vehicle simulator. In the second stage,
you will add a level-of-detail optimization for the heightfield based on the ROAM algorithm. In the
last stage, you will add texture mapping and one or more of a list of special effects.

In this document, we give an overview of the problem and describe the first part of the assign-
ment.

2 Heightfields

Heightfields are a special case of mesh data structure, in which only one number, the height, is
stored per vertex. The other two coordinates are implicit in the grid position. Ifsh is the horizontal
scale,sv the vertical scale, andH a height field, then the 3D coordinate of the vertex in rowi
and columnj is 〈shj, svHi,j , shi〉 (assuming that the upper-left corner of the heightfield hasX
andY coordinates of0). By convention, the top of the heightfield is north; thus, assuming that a
right-handed coordinate system, the positive X-axis points east, the positive Y axis points up, and
the positive Z-axis points south. The heightfield is typically represented as a linear array of height
samples, with thei, j element at indexiw + j, wherew is the width of the heightfield. Because of
their regular structure, heightfields are trivial to triangulate; for example, Figure 1 gives two possible
triangulations of a5 × 5 grid. The ROAM algorithm that we use in Part-b of the project produces
triangulations that follow the pattern on the left of Figure 1.

2.1 View frustum culling

One of the easiest ways to improve rendering performance is to cull objects that are outside the
view. For this project, where the view is horizontal, it is particularly easy. Given the vehicle’s
heading (a vector in the XZ plane) and the horizontal field of view, one computes the line equations
for the sides of the frustum and then uses these equations to cull triangles outside the view. Figure 2
illustrates this optimization for a small mesh.

0 1 2 3 4 0 1 2 3 4

1

2

3

4

0 0

1

2

3

4

Figure 1: Heightfield triangulations

view frustum

rendered part of mesh

Figure 2: View-frustum culling

2

3 The vehicle

The user interface provides simple controls to navigate in the simulated SUH. This section describes
the controls and the simulated physics of the vehicle.

3.1 The controls

Navigation is controlled using the arrow keys. In addition, your implementation should support a
wireframe view and dynamically changing the level of detail.

UP ARROW accelerate
DOWN ARROW brake
LEFT ARROW turn left

RIGHT ARROW turn right
w toggle wireframe mode
q quit the viewer

For the navigation controls, you will need to sample the state of the arrow keys (instead of just
reacting to keyboard events). GLUT provides a function for registering a callback that gets called
when a special key is released:

void glutSpecialUpFunc (void (*func)(unsigned int key, int x, int y));

Thus you will need two callbacks to keep track of the state of the arrow keys.1 Since holding down
a key generated a repeated sequence of key events, which take time to service, you can disable key
repeats using the following GLUT call:

glutIgnoreKeyRepeat (1);

3.2 The physics model

We simulate the SUH with a very simple physics model based on discreet sampling. The state of
the vehicle at a stepi is given as a triple(pi, vi, hi), wherepi is the vehicle’s position in theX −Z
plane,2 vi is its velocity, andhi is its heading in degrees (with north being180 and south being0).
We recompute the state of the vehicle one hundred times per second (i.e., every 10 milliseconds).
Given the vehicle’s state at stepi, we can compute its state at stepi + 1 as follows:

v = vi − f0 − f1vi − f2(v2
i) + (g · s(pi, hi))

vi+1 =


max(0, v + a) if accelerating
max(0, v − b) if breaking
max(0, v) otherwise

hi+1 =


hi + t

(v2
i+1)+l

if turning left

hi − t
(v2

i+1)+l
if turning right

hi otherwise

pi+1 = pi + vi+1〈 sin(hi+1), cos(hi+1)〉
1Note that you should guarantee that any transient keystoke gets sampled at least once in the physics model.
2Note that the positionp of the vehicle is given inX-Z coordinates; the altitude of the vehicle (theY coordinate)

will always be 2 meters above the terrain at the vehicle’s position.

3

This computation depends on a number of factors, which are defined as follows:

a = 5 × 10−3 acceleration factor
b = 6 × 10−3 braking factor

f0 = 6 × 10−5 friction coefficient
f1 = 2 × 10−4 friction coefficient
f2 = 4 × 10−4 friction coefficient
g = 〈0,−0.1, 0〉 gravity
l = 0.3 turn limit
t = 0.2 turning factor

s(p, h) unit slope vector with directionh at positionp

If the vehicle is traveling at velocityvi, we first compute a new velocityv that represents the effects
of friction and gravity. We then apply acceleration and/or breaking to computevi+1 (note that we
do not let the velocity fall below zero). We use the new velocity in computing the new heading.
Lastly, we compute the new position.

Computing the slope functions(p, h) can be done in one of a couple ways.

• Project a 2D unit vectord in the directionh; i.e., d = 〈 sin(h), cos(h)〉 and letp′ = p + d.
Then letH(p) be the height at positionp. The unnormalized slope vector is〈dx,H(p′) −
H(p),dz)〉. Divide this vector by its length to gets(p, h).

• The other approach is to letn be the normal vector of the triangle containingp and letd =
〈 sin(h), y, cos(h)〉, for some unknowny. Then solven · d = 0 for y and sets(p, h) = d

||d|| .

These methods will produce different results, but either is sufficient for the simulation.

Your simulator should take care that the vehicle does not go off the edge of the map. If that
happens, you could teleport it back to the center of the map, or bounce it off the edge. It is also
important to make sure that the vehicle stays above the surface of the heightfield.

4 Input format

A terrain data set is represented as a directory containing the following files:

• map — this file contains information about the terrain data set, such as scale and feature
locations.

• hf.pgm – this file contains the height-field data.

• color.ppm — this file contains the vertex color information.

Later stages of the project will add more files to the data set. We will provide code for loading the
input data.

4.1 Map file

The map file contains summary information about the terrain, plus the names and positions of
various terrain objects.

4

4.2 Height-field data

The heightfield data is stored as aPortable Grey Map(PGM) file with 16-bit samples. Its dimension
will be 2N + 1 samples on a side (i.e., 2N × 2N grid cells). The horizontal scale (i.e., distance
between grid points) and vertical scale are given as part of the map file.

4.3 Color

The color of the terrain is specified as a separate pixmap image inPortable PixMap(PPM) format.
There is one pixel per heightfield grid square (e.g., if you have a513 × 513 heightfield, then the
corresponding color file will be512 × 512). Use this color for the two triangles that represent the
grid cell.

4.4 Data structures

We will provide code for importing the terrain description. The main entry-point to this API is the
function

Map_t *LoadTerrain (const char *terrain);

This function takes the name of thedirectorycontaining the terrain data set and returns amapobject,
which contains in-memory versions of the data. TheMap_t type is defined ininclude/map.h
as follows:

typedef unsigned short Elev_t;
typedef unsigned char RGB_t[3];
typedef struct

char *path; /* the pathname of the terrain */
int sideLen; /* number of rows and columns in */

/* the data file */
float vScale; /* vertical scale (default 0.1) */
float hScale; /* horizontal scale (default 1.0) */

/* Height-field data */
Elev_t *elev; /* elevation data */
RGB_t *color; /* color data */

Map_t;

Theelev andcolor arrays havesideLen 2 elements and are stored in row-major order.

5 Requirements

Part-a of the project is due on Monday, November 15. For this part, you should implement the
controls and vehicle simulator as described in Section 3 and the heightfield renderer with view
frustum culling. Your final version must be checked into your CVS repository by 9pm on Monday,
November 15. You will be expected to demo your project in the MacLab on the 11th between 1:30
and 3:30pm.

The car’s initial position should be in the center of the map facing east and the initial velocity
should be zero.

5

6 Document history

Nov. 15 Changed the equation forvi+1 to ensure that velocity does not go negative.

Nov. 4 Original version.

6

