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4.1 Introduction

We recall Theorem 1.8:

Theorem 4.1 (Complete Reducibility – Weyl)
Every finite dimensional representation of GLn(C) admits a unique decomposition into irreducibles:

W =
⊕
i

V mii (4.1)

Thus we wish to find the irreducible representations of GLn(C).

4.2 Irreducible Representations of GLn(C):
First Construction (Deyruts)

Fix λ, a Young diagram of height ≤ n. We associate with λ an irreducible representation Vλ (known as
the Weyl module or Schur module). Let x be a variable square matrix of size n, on which GLn(C) acts by
multiplication on the left. This induces a GLn(C)-action on C[x] by (A · f)(x) = f(Atx)1. Hence C[x] is a
representation of GLn(C) (infinite dimensional).

For any column c =

c1...
cl

, where ci ∈ 1, ..., n are distinct, and c1 < c2 < ... < cl, we define

ec = det
(
x

(1...l)
(c1...cl)

)
,

i.e., the determinant of the minor of x with columns 1 to l and rows c1 to cl.

For any semistandard tableau T of shape λ, we define eT =
∏
c ec, where c ranges over the columns of

T . Let Vλ = 〈eT | T semistandard of shape λ〉, i.e., the subspace of C[x] spanned by eT ’s. To show that Vλ
is invariant under GLn(C), it is enough to show that A · ec =

∑
c′ α(c, c′) · ec′ . To see that, we observe that

(A · ec)(x) = ec(Atx) = det
(

(Atx)(1...l)
(c1...cl)

)
=
∑
c′ α(c, c′) · ec′ , from the properties of the determinant. Note

that the c′’s involved here of the same shape as c (i.e. same length). Since A · (fg) = (A · f)(A · g), it follows
that A · eT is also a linear combination of eT ′ , where the T ′’s have the same shape as T . Hence we have that
Vλ is also a representation of GLn(C).

Theorem 4.2 1. Vλ is an irreducible representation of GLn(C) and also of SLn(C).
1We need At for it to be an action
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2. Every irreducible finite dimensional representation of SLn(C) is isomorphic to Vλ for some λ of height
< n. Furthermore, Vλ 6∼= Vλ′ if λ 6= λ′.

3. Every irreducible finite dimensional representation of GLn(C) is isomorphic to Vλ⊗Detα, where Det :
A 7→ det(A) and α ∈ C. Similarly, Vλ ⊗Detα 6∼= Vλ′ ⊗Detα

′
if λ 6= λ′ or α 6= α′.

4. The set {eT | T semistandard of shape λ} is a basis of Vλ; i.e., the eT ’s are linearly independent.

Proof: (See Fulton & Harris, pp. 221-237.) Note that eT is defined for any T of shape λ (not necessarily
semistandard). To prove 4. we write an arbitrary RT as a linear combination of semistandard eT ’s.

The above result shows that the Det representation is the only non-trivial representation of GLn(C) which
when restricted to SLn(C) becomes trivial.

4.3 Characters

Let W be a representation of GLn(C). Then define χW (g) to be the trace of g on W , where g ∈ GLn(C)
(This is a class function that is invariant on conjugacy classes). From elementary linear algebra, we know
that every matrix in GLn(C) is conjugate to a matrix in Jordan canonical form. Hence χW is determined
by its values on matrices in Jordan canonical form. It is easy to see (by looking at the Jordan canonical
form or otherwise) that the diagonalizable elements form a dense subset of GLn(C), so for any rational
representation (i.e., the entries of the representation are rational functions of the entries of the matrix), χW

is determined by its values on diagonal matrices

x1

. . .
xn

, which we denote by χW (x1, ..., xn); this is

called the character of W (and is a rational polynomial function, with a suitable power of the determinant
as its denominator in the case of GLn(C)).

Theorem 4.3 χVλ(x1, ..., xn) = Sλ(x1, ..., xn), and if λ 6= λ′, then Sλ 6= Sλ′ .

Proof:

Each eT is an eigenvector of

x1

. . .
xn

:

x1

. . .
xn

 · eT =
∏
i

λ
µi(T )
i eT ,

where µi(T ) is the number of i’s in T . We call eT a “weight vector” in the representation with weight
µ = (µ1, ...µn). Since {eT } is a basis, we have

χW (x1, ..., xn) =
∑
T

(
∏
i

x
µi(T )
i ) =

∑
T

Content(T ),

where we sum over semistandard T of shape λ, and Content(T ) = Sλ(x1, ..., xn).
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4.4 Irreducible Representations of GLn(C):
Second Construction

Let V = C
n, the standard representation of GLn(C). GLn(C) acts on V ⊗d from the left: g(v1 ⊗ · · · ⊗ vn) =

g(v1)⊗ · · · ⊗ g(vn). Sd acts on V ⊗d from the right: (v1 ⊗ · · · ⊗ vn)σ = vσ(1) ⊗ · · · ⊗ vσ(d). The two actions
commute, so V ⊗d is a representation of GLn(C)× Sd.

Each irreducible representation of GLn(C) × Sd is isomorphic to one of the form U ⊗ U ′, where U and
U ′ are irreducible representations of GLn(C) and Sd, respectively. This is in turn isomorphic to Vλ ⊗ Sµ,
where Vλ and Sµ are the corresponding Weyl and Specht modules, respectively. By Weyl’s Theorem (4.1),
we have

V ⊗d =
∑
λ, µ

ht(λ) ≤ n
size(µ) = d

mλ,µVλ ⊗ Sµ (4.2)

Next we give an explicit decomposition of V ⊗d. Fix λ, with size(λ) = d. Fix T to be any standard
tableau of shape λ. Define the Young symmetrizer cTλ to be aλbλ, where aλ =

∑
g∈Row(T ) eg and bλ =∑

g∈Col(T ) sgn(g)eg. Let STλ (V ) = V ⊗dcTλ , the image of V ⊗d under cTλ .

Theorem 4.4 1. STλ (V ) ∼= ST
′

λ (V ) if T and T ′ are standard of the same shape λ. If ht(λ) > n, then
Sλ(V ) = {0}.

2. Sλ(V ) is isomorphic to Vλ in Theorem 4.2; i.e., it is an irreducible representation of GLn(C) (if
ht(λ) ≤ n).

Example 4.5 1. T = (1...d). We have cλ : v1⊗ · · · ⊗ vn 7→
∑
σ∈Sd vσ(1)⊗ · · · ⊗ vσ(n), so Sλ = Symd(V ).

2. T =

1
...
l

. We have cλ : v1 ⊗ · · · ⊗ vn 7→
∑
σ∈Sl sgn(σ)vσ(1) ⊗ · · · ⊗ vσ(n), so Sλ = Λl(V ).

3. λ = (2, 1), T =
1 2
3 .

cλ = c(2,1) = (e1 + e(1 2))(e1 − e(1 3)) = 1 + e(1 2) − e(1 3) − e(1 3 2).

Thus Sλ(V ) = the image of cλ on V ⊗d = the span of v1⊗v2⊗v3+v2⊗v1⊗v3−v3⊗v2⊗v1−v3⊗v1⊗v2.

Theorem 4.6 1. As a representation of GLn(C), V ⊗d =
∑
λ,T S

T
λ (V ), where λ ranges over Young dia-

grams of size d and T ranges over standard tableau of shape λ.

2. V ⊗d =
∑
λ Sλ(V )⊗ Sλ(V ), where again λ ranges over Young diagrams of size d, and here the first S

term is the Weyl module and the second is the Specht module. In other words, in the formula (4.2),
we have mλ,µ = 1 if µ = λ, and mλ,µ = 0 if µ 6= λ.

Corollary 4.7 (to Theorem 4.3)
The finite dimensional representations of GLn(C) and SLn(C) are determined by their characters.
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Proof: We have that Sλ 6= Sλ′ if λ 6= λ′ and that the Sλ are linearly independent. If V is any polynomial
representation of GLn(C) (or SLn(C)) with character χV (x1, ..., xn), then let (by Weyl’s theorem) v =∑
mλvλ. Then χV =

∑
mλSλ. Therefore to calculate mλ we just express the character χV in the Schur

basis {Sλ}; the coefficients correspond to the multiplicities.

4.5 Tensor Products and a Decision Problem

Suppose we have W = Sλ(V ) ⊗ Sµ(V ) = Vλ ⊗ Vµ. How does Vλ ⊗ Vµ decompose? Write Vλ ⊗ Vµ =∑
ν NλµνVν , so that now the problem is reduced to computing the terms Nλµν . We have χW = SλSµ, so

SλSµ =
∑
ν NλµνSν , which is a symmetric function, so we may express it in terms of the Schur basis. The

Littlewood-Richardson rule gives a combinatorial property for computing the terms Nλµν . Using identities
in symmetric function theory, they showed that Nλµν is the number of ways in which the Young diagram λ
can be expanded.

Problems

1. What is Nλµν explicitly?

2. Given β, is Vβ a subset of Vλ ⊗ Vµ, i.e., is Nλµν 6= 0?

Goal: A polynomial time algorithm for the decision problem “Does Nλµν = 0?”.


