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Abstract

In this exposition, we give a overview of the GCT1 approach to solve fundamental lower bound
problems in algebraic models of computation.

1.1 Lower bound problems

Consider a polynomial f(~x) ∈ Z[~x] with integral coefficients. The non-uniform version of the P v/s NP
problem, prescribes a specific such f and asks if it can be shown not to have polynomial size arithmetic
circuits over F2. The characteristic zero version of the same problem asks whether we can prove that
suitable f ’s do not have polynomial sized arithmetic circuits over Z (or equivalently Q).

Clearly if an f has a polynomial sized circuit over Z, then it can be transformed into a polynomial sized circuit
over F2 to compute f mod 2. Hence the characteristic zero version is an implication of the characteristic 2
version of the problem. Hence forth, we concentrate only on characteristic zero version of the problem.

In order to prove that a certain f does not have polynomial size circuits over Z, we hope to prove a (possibly)
stronger statement, viz. that it does not have polynomial size circuits over C (since C has more constants
than Z). Since C is an algebraically closed field with a well understood topology, we hope that results in
Algebraic Geometry, Representation Theory and Geometric Invariant Theory will come to our rescue and
help us solve the problem. What we will see is that the current state of knowledge in these areas is not
sufficient to help us resolve the lower bound problems we are interested in. However, we will be able to show
that knowing answers to certain mathematical questions (which have independent mathematical interest)
will help us resolve our lower bound questions.

So what is so great about this approach? Lower bound problems are essentially problems of non-existence,
and hence they are hard to solve. This approach reduces the hard non-existence problems into tractable
existence problems. This is akin to the NP-characterization of primality, where the proof of primality of
p is a generator of Z∗p. These existence problems are in the areas of Representation Theory and Algebraic
Geometry. The primality reduction uses basic number theory and group theory, while the GCT reduction
uses classical GIT2 (due to Hilbert and Weyl), modern GIT (due to Mumford, Kempf and others), together
with some new results.

1Geometric Complexity Theory
2Geometric Invariant Theory
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Before we explain some of the problems which need to be solved for a successful application of this GCT
approach, lets pause to recall some basic results of representation theory. Some of the representation theoretic
problem, encountered in this approach is outlined in §1.4.

1.2 Representation Theory - An Introduction

We start with a working definition of a reductive group.

Definition 1.1 A group G is said to be reductive if

1. G is finite or C∗,

2. (simple groups) G = SLn(C), SOn(C), SP2n(C),

3. G is an exceptional group or

4. G is a direct product of reductive groups.

We will never encounter exceptional groups, so we don’t bother defining it here. Recall that SOn(C) consists
of matrices which preserve a symmetric bilinear form and SP2n(C) consists of matrices which preserve a
skew-symmetric bilinear form. These definitions determine the group uniquely up to conjugation.

Definition 1.2 A representation ρ of a group G is a homomorphism ρ from G to a GL(V ), where V is a fi-
nite dimensional complex vector space. Here GL(V ) denotes the group of all invertible linear transformations
on V . Note that a representation should specify the vector space in addition to the homomorphism.

A representation may also be viewed as equipping the vector space V with a C[G]-module structure, i.e.
a vector space with a G-action which is compatible with the linear structure. When the representation is
obvious from context, we denote ρ(g)(v) as gv, where g ∈ G, v ∈ V .
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Definition 1.3 Let V and W be two representations of G. A G-equivariant map or a homomorphism
between the two representations, is a map ϕ between the two underlying vector spaces which commutes with
the G-action on the two vector spaces, i.e. ∀g ∈ G,ϕ(gv) = gϕ(v).

Definition 1.4 Let V be a representation of G. A subspace W of V is called a sub-representation if W
is invariant under G i.e. ∀g ∈ G, gW ⊆W .

Every representation has two trivial sub-representations, viz, itself and the null representation {0}. A repre-
sentation V is called irreducible if has no non-trivial sub-representations, and otherwise called reducible.

Here are some examples of representations:

1. G = SLn(C), V = C
n: action by left multiplication

2. G = Sn, V = C
n: action by permuting coordinates.

3. Any G, any V : g(v) = v (the trivial action).

4. If G is a finite group and X is a G-set (i.e. permits a G-action), then V = C
X is a representation of

G. Here G acts on the basis ({ex : x ∈ X}) by acting on the subscripts.

5. Special case of above, where X = G and G acts on itself by left multiplication. This representation is
called the left regular representation of G.

Lets see some ways by which new representations may be constructed from old. Let V and W be two
representations. The direct sum V ⊕W of the two representations is a G-representation through the action
g(v, w) = (g(v), g(w)). Similarly the tensor product V ⊗ W is a G-representation through the action
g(v ⊗ w) = g(v)⊗ g(w).

Let V,W be vector spaces and suppose V admits a G-action. Suppose also that T : W ↪→ V , is an injection
of vector spaces and Im(T ) is G-invariant. Then T induces a G-action on W as well, since W ∼= Im(T ).

In particular if V is a G-representation, then it induces a G-action on the n-fold alternating product
Λn(V ) via the map from

Λn(V ) 7→ V ⊗n which sends v1 ∧ · · · ∧ vn 7→
∑
τ∈Sn

sgn(τ) vτ(1) ⊗ · · · ⊗ vτ(n)

Similarly the map from

Symn(V ) 7→ V ⊗n which sends v1 . . . vn 7→
∑
τ∈Sn

vτ(1) ⊗ · · · ⊗ vτ(n)

shows that the n-fold symmetric product Symn(V ) also admits a G-action.

If V is a G-representation, so is the dual V ∗, via the action g(f)(v) = f(g−1v). Here g ∈ G, f ∈ V ∗, v ∈ V .
Finally, if V and W are G-representations, then Hom(V,W ) admits a G-action via g(ϕ)(v) = g(ϕ(g−1v)).
Here Hom(V,W ) is the (vector) space of all maps from V to W . Actually, the dual representation is a
special case of this, since V ∗ = Hom(V,C).
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1.3 Complete reducibility

In this section, we prove Weyl’s result on complete reducibility of representations of finite groups.

Proposition 1.5 Let V be a G-representation and W ⊆ V be a sub-representation. Then W has a comple-
mentary subspace W⊥ which is also G-invariant.

Proof: Let 〈·, ·〉 be any hermitian inner product on V . Define a new hermitian inner product by (x, y) =
|G|−1∑

g∈G〈gx, gy〉. Now let W⊥ be the orthogonal complement of W under (·, ·). Then it is easy to see
that W⊥ is also G-invariant.

Corollary 1.6 Any representation is a direct sum of irreducible representations.

Proof: If V is not irreducible, let W be a non-zero proper sub-representation of V . Then V = W ⊕W⊥ by
the above result. By induction on dim(V ), both W and W⊥ can be written as a direct sum of irreducible
representations.

Note that we have not yet proved that the decomposition is unique. That is accomplished by

Lemma 1.7 (Schur’s lemma) Let V and W be irreducible G-representations, and ϕ : V 7→ W , a G
equi-variant map. Then

1. Either ϕ = 0 or an isomorphism.

2. If V = W = C
m and ϕ an isomorphism, then ϕ = λI, for λ ∈ C.

Proof: Both ker(ϕ) and Im(ϕ) are G-invariant submodules of V and W respectively. If ker(ϕ) 6= {0} or
Im(ϕ) = {0} then ϕ = 0. So, if ϕ 6= 0, then the only possibility is ker(ϕ) = {0} and Im(ϕ) = W , i.e. ϕ is an
isomorphism.

For the second claim, apply the previous result to ϕ− λI, where λ is any eigenvalue of ϕ (exists since C is
algebraically closed), and conclude that ϕ = λI.

Theorem 1.8 (Complete Reducibility - Weyl) If V is a representation of a finite group G, then V
can be written as ⊕iV aii , where Vi are irreducible G-representations and ai > 0 are integers. Moreover this
decomposition is unique.

Proof: We have already shown the existence. Suppose V = ⊕iUi = ⊕jWj are two decompositions, where
the Ui’s and Wj ’s are irreducible representations, not necessarily distinct. Let ϕ denote the identity map
from V = ⊕iUi to V = ⊕jWj , and θi be its restriction to Ui. Since θi 6= 0, Im(θi) ∩Wj 6= 0 for some j, and
by Schur’s lemma Ui ∼= Wj for suitable j. Remove Ui and Wj from either side and continue.

1.4 Tractable Existence Problems

We have seen how all representations of a finite group, can be written as the direct sum of irreducible
representations. The same is true for a larger class of groups, which includes compact lie groups. So the
problem of classifying all representations for these groups, boils down to classifying all their irreducible
representations. This has been done for many classes of groups, including
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1. Simple groups – Weyl, Killing, Cartan,

2. Sn – Frobenious, Schur

3. Simple groups of Lie type (e.g. SLn(Fq)) – Deligne, Lusqtiq(?)

For example, every irreducible representation of SLn(C) can be tagged with a Young Tableaux. The same
is true for Sn as well. In these cases, we can identify an irreducible representation with the Young tableaux
associated with it. By Vµ(G), we denote the irreducible G-representation with tag µ.

Another important computational problem involving group representations is the following: Given a reduc-
tive group G, an irreducible representation Vµ(G) and a subgroup H, compute the decomposition of the
Vµ(G) considered as a H-representation.

A decision version of the same problem is the decomposition problem: Given a reductive group G, an
irreducible G-representation Vα(G), a subgroup H of G and an irreducible H-representation Vµ(H), decide
whether Vµ(H) occurs in the decomposition of Vα(G) as a H-representation.

A special case is the tensor product decomposition problem obtained by setting G = H × H, and
taking the diagonal subgroup {(h, h) : h ∈ H} ⊆ G ∼= H as the subgroup. Let Vα(H), Vβ(H) and Vµ(H) be
three irreducible H-representations. Then Vα(H) ⊗ Vβ(H) is an irreducible G-representation. In this case,
the problem is to decide whether Vµ(H) is a sub-representation of Vα(H)⊗ Vβ(H).

The problem above has been solved for some special families of groups. For example, if H = SLn(C), then
the Littlewood-Richardson rule gives a polynomial time (in input bit length) algorithm to find the complete
decomposition of Vα(H)⊗ Vβ(H). More generally, the Kashiwara-Littlemann rule can be used to settle the
case where G is a simple group.

Conjecture 1 There exists a polynomial time algorithm to solve the Tensor product decomposition problem
for H = Sn

The tensor product decomposition problem is in turn a special case of the Plethysm Problem. Here the
problem is to describe the complete decomposition (into irreducible representations with multiplicities) of
representations derived from a given representation. For e.g. V ⊗ V, V ∗, Symk(V ),Λk(ΛlV ). If V itself is a
sum of two representations then these representations decompose accordingly, since if V = U ⊕W , then

1. V ⊗ V = (U ⊗ U)⊕ (U ⊕W )⊕ (W ⊗ U)⊕ (W ⊗W )

2. Λk(V ∗) = Λk(V )∗

3. Λk(V ) =
∑
i+j=k Λi(U)⊗ Λj(W )

and so on.

Conjecture 2 The decision version of the Plethysm problem has a polynomial time (in input bit length)
algorithm for representations of reductive groups.

1.5 Conclusion

The GCT approach provides a unified approach to attack many fundamental lower bound problems occurring
in Algebraic models of computation. It provides a recipe for converting hard non-existence questions into
“easy” existence problems. This approach also relates the P v/s NP and other lower bound questions to
deep areas of mathematics like GIT, Representation theory and eventually to String theory through quantum
groups!


