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Abstract

The irreducible representations of Sn, i.e. the Specht modules are indexed by partitions λ of n. For
any two partitions λ, µ of n, Sλ ⊗ Sµ = gλµνSν , for suitable integers gλµν . The actual values of these
coefficients still eludes us. We look at a formula (admittedly messy), which gives the exact values of gλµν
for simple shapes λ, µ.

6.1 Recall

Before we get into the main topic, let us recall what we know about the representations of Sn.

LetG be any finite group, and C[G] the group algebra associated withG. This so called regular representation
is special since it contains all the irreducible representations of G. Irreducible representations are in bijective
correspondence with the conjugacy classes of G.

Let us now focus on the case G = Sn. Each conjugacy class of Sn is indexed by a unique partition λ of n,
where the components of λ determine the cycle structure of some member of the conjugacy class (choice of
member does not affect answer).

Let λ = (λ1, . . . , λk) be a partition of n, with 0 < λ1 ≤ λ2 ≤ · · · ≤ λk. Then |λ| := n denotes the size of λ,
`(λ) := k denotes its length and 〈λ〉 := `(λ) +

∑
log2(λi) the space required to represent the partition. The

Ferrers’ diagram of λ i.e. Fλ is the set of left-justified boxes with λi squares in the i-th row (1st row = top
row). By abuse of notation Fλ is also denoted λ.

Corresponding to each partition λ, we define aλ to be the sum of those elements of Sn which leave all the
rows of Fλ invariant (number the boxes in Fλ in the canonical order). Similarly bλ is the signed sum of those
elements of Sn which leave the columns of Fλ invariant. Finally, let cλ = aλbλ be the Young’s symmetrizer,
corresponding to λ. Then the representation Sλ is the image of the endomorphism on C[Sn] which takes
x 7→ xcλ.

Now before we come to the characters of these irreducible representation, some definitions are in order.

Definition 6.1 Put x = (x1, . . . , xn), 0 ≤ r ≤ n, λ ` n, µ ` n.

• (r’th power symmetric function) Pr(x) =
∑
i x

r
i ,

• (Power symmetric functions) Pλ(x) =
∏
j Pλj (x),

• (Anti-symmetric polynomials) Aλ(X) = det ||xλj+n−ji ||,

• (Discriminant) D(x) = A(0,...,0)(x) =
∏
i<j(xi − xj),

• (Schur polynomials) sλ(x) = Aλ(x)/D(x),

• (r’th Homogenous symmetric functions) hr(x) = sum of all distinct monomials of degree r, and
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• (Homogenous symmetric functions) hλ(x) =
∏
j hλj (x)

Note that since Aλ is anti-symmetric, sλ is a polynomial with integer coefficients. Both sλ as well as Pµ
form a basis for the symmetric homogenous functions of degree n, as λ and µ range over partitions of n.

Let χ be class function on Sn (i.e. constant on conjugacy classes). Define the Frobenious map,

F(χ) =
1
n!

∑
µ`n

χ(µ)Pµ(x) (6.1)

where χ(µ), represents the value of the character at the conjugacy class corresponding to µ. Every homoge-
nous symmetric polynomial of degree n is of the form F(χ) for a suitable character χ. This is easily seen
as follows: Start with a symmetric homogenous polynomial f of degree n. Since the {Pλ}’s form a basis of
this space, f = cλPλ for suitable scalars λ. Now define χ so that χ(σ) = n!/Nλcλ, where λ corresponds to
the conjugacy class of σ and Nλ is the number of elements in that conjugacy class. Since n!/Nλ is always
an integer, χ(σ) is always an integral multiple of cλ.

The remarkable connection between the irreducible characters and the Schur polynomials is given by

sλ(x) = F(χλ),

where χλ is the character corresponding to the irreducible representation Sλ of Sn. Hence the value of the
irreducible characters of Sn are the coefficients which occur when the Schur polynomials are expressed in
terms of the Power symmetric functions. This relation can be inverted, and similar coefficients appear when
the Power symmetric functions are expressed in terms of the Schur polynomials.

Given two homogenous symmetric polynomials of degree n, f1 and f2, define their Kronecker product f1⊗f2

as F(χ1χ2), where χi = F−1(fi), for i = 1, 2. This definition is motivated by the following observation:
With this definition, we have that sλ ⊗ sµ corresponds to the character λµ of the representation Sλ ⊗ Sµ.
Moreover if sλ ⊗ sµ = gλµνsν , then gλµν gives the multiplicity of the representation Sν in Sλ ⊗ Sµ. The
reasoning is as follows:

If Sλ ⊗ Sµ =
∑
gλµνSν , then we also have χλχµ =

∑
gλµνχ

ν . Then by linearity of F , we have F(χλχµ) =∑
gλµνF(χν), i.e. sλ ⊗ sµ =

∑
gλµνsν as promised. Moreover, if ( , ) denotes the Hall inner product on

symmetric functions, then we also have that gλµν = (sλ ⊗ sµ, sν).

6.2 Basic Definitions

In the rest of this exposition, we explore the values of gλµν when λ and µ are restricted to a small class of
shapes.

Definition 6.2 Let 0 ≤ t ≤ n. Then the partition (1t, n − t) is said to be a hook shape and the partition
(t, n− t) is said to be a two-row shape.

It was known before that for partitions λ ` n, µ ` n and ν ` n, such that λ and µ are hook shapes, then
∀ν gλµν ≤ 2. Similarly, if λ is a hook shape and µ is a two-row shape, then ∀ν gλµν ≤ 3. Both results hold
for an arbitrary n. This is the first result, where gλµν can be unbounded.
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If λ and µ are partitions of n then we write λ ≤ µ if `(λ) ≤ `(µ) and λ`(λ)−p ≤ µ`(µ)−p for 0 ≤ p ≤ `(λ). In
other words Fλ is completely inside Fµ, when they are superposed with the bottom left corner box aligned.
If λ ≤ µ, denote by Fµ/λ the diagram of the skew shape µ/λ obtained by removing the boxes corresponding
to λ from Fµ.

Let λ ` n and α = (α1, . . . , αk) be a sequence of integers such that
∑
αi = n. A decomposition of λ of

type α denoted by D1 + · · ·+Dk = λ, is a sequence of shapes

λ1 ⊂ λ2 ⊂ · · · ⊂ λk = λ

Di = λi/λi−1 a skew shape and |Di| = αi.

A column strict tableau T of shape µ/λ is a filling of Fµ/λ with positive integers such that in each row,
the numbers weakly increase from left to right, and in each column strictly increase from bottom to top. T
is said to be standard if the entries of T are precisely 1, . . . , |T | = |µ/λ|. Let CS(µ/λ) denote the set of all
column strict tableau’s of shape µ/λ and ST (µ/λ) the set of all standard tableau’s of the same shape. For
T ∈ CS(µ/λ), denote by w(T ) the monomial obtained by replacing i ∈ T with xi and taking the product
over all boxes, i.e. w(T ) =

∏|T |
i=1 x

Ni
i , where N(i) is the number of occurrences of i in T .

Now, the skew Schur function sµ/λ is defined by

sµ/λ(x1, x2, . . . ) =
∑

T∈CS(µ/λ)

w(T ) (6.2)

Setting λ = ∅ we get a combinatorial definition of the usual Schur functions. When λ = ∅, we call the
partition µ/λ a straight shape, to distinguish it from the more general skew shape. The n’th homogenous
symmetric function hn is thus defined by hn = s(n).

A skew shape µ/λ is said to be a horizontal r-strip, if |µ/λ| = r and no two boxes of µ/λ are in the same
column.

For two shapes λ and µ, denote by λ ? µ the skew diagram obtained by joining at the corners the rightmost
lowest box of Fλ to the leftmost highest box of Fµ.

Hence we have that CS(λ?µ) = CS(λ)×CS(µ), and this in turn implies that sλsµ = sλ?µ. So, we can write
an arbitrary product of Schur functions (of straight shapes) as the Schur function of a single skew shape.

6.3 Basic Formulae

We start with some basic properties of the Kronecker product.

hn ⊗ sλ = sλ, i.e. F(trivial char) = hn
s(1n) ⊗ sλ = sλ′ , where λ′ is the conjugate partition of λ
sλ ⊗ sµ = sµ ⊗ sλ = sλ′ ⊗ sµ′ = sµ′ ⊗ sλ′

(P +Q)⊗R = P ⊗R+Q⊗R
gλ1λ2λ3 = gλπ(1)λπ(2)λπ(3) , for any permutation π ∈ S3.

Fact 6.3 Some results about Schur functions

• (Pieri’s Rule) hr · sλ =
∑
µ sµ, where the sum is over all µ such that µ/λ is a horizontal r-strip.
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• (Jacobi-Trudi identity) sλ = det ||hλj−i+j ||1≤i,j≤`(λ), where h0 = 1 and hr = 0 for r < 0.

• (Littlewood) sαsβ ⊗ sλ =
∑
γ`|α|

∑
δ`|β| cγδλ(sα ⊗ sγ)(sβ ⊗ sδ), where the cγδλ are the Littlewood-

Richardson coefficients, i.e. cγδλ = (sγsδ, sλ).

Some of the above proofs can be found in [FH, Appendix A]. Pieri’s rule gives us a way to multiply Schur
polynomials with a homogenous symmetric function, and the Jacobi-Trudi identity allows us to express
Schur polynomials in terms of homogenous symmetric functions. One simple consequence of the Jacobi-
Trudi identity is that s(k) = hk, i.e. if the partition has only one part, the Schur polynomial is the same as
the corresponding homogenous symmetric function. Littlewood’s result was used by Garsia and Remmel to
show that

(sH · sK)⊗ sD =
∑

D1+D2=D
|D1|=|H|
|D2|=|K|

(sH ⊗ sD1) · (sK ⊗ sD2)

which by induction can be used to show that

(ha1 . . . hak)⊗ sD =
∑

D1+···+Dk=D

|Di|=ai

sD1 . . . sDk (6.3)

Note that the right hand side of the above expression does not contain any ⊗ and the result from which it
was proved contains ⊗. This is possible because in our case, the Schur functions involved are just those with
exactly one part. Hence they are just hk for suitable k, and we know that hn ⊗ sλ = sλ.

A näıve upper bound for the number of terms which occur in the above expansion is the number of ways
in which |D| can be partitioned into k sets with the i’th set having ai elements, which is the multi-nomial
coefficient

( |D|
a1 ... ak

)
. Note that the right hand size vanishes if |D| 6=

∑
ai.

6.4 A näıve algorithm

At this point we know enough to give an algorithm to calculate the tensor product of two Schur functions,
though it is horribly inefficient.

Input: Partitions λ, µ of n.
Output: {gλµν}, i.e. number of times each representation Sν occurs in Sλ ⊗ Sµ.
Notation: Let l := `(λ),m := `(µ).

1. Using the Jacobi-Trudi identity, write sλ as a polynomial in the basic homogenous symmetric functions.
The number of terms in the expansion is l!.

2. Similarly write sµ as a polynomial in the basic homogenous symmetric functions. The number of terms
in the expansion is m!.

3. Using (P +Q)⊗R = (P ⊗R) + (Q⊗R), we can write sλ⊗ sµ as the sum of l!m! terms, each of which
is of the form sa1 . . . sal ⊗ sb1 . . . sbm .
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4. To compute such a term, use equation (6.3) and reduce it to computing sD1 . . . sDl over decompositions
D1 + · · · + Dl = D := (b1) ? · · · ? (bm), with |Di| = ai. Number of such terms is bounded by( ∑

bj
a1 ... al

)
=
(

n
a1 ... al

)
, since

∑
bj = |µ| = n.

5. Consider a typical term sD1 . . . sDl . Each skew shape Di is a “subshape” of the skew shape D.
Hence each of the skew Schur function’s sDi is a simple product of Schur functions with one part,
i.e. homogenous symmetric functions. Each typical term becomes a product of O(n) homogenous
symmetric functions.

6. At this point we have eliminated the ⊗ in favor of multiplication

7. Now we can use the Pieri rule to write ha ·hb as a sum of Schur functions. Note that if ha ·hb =
∑
µ sµ,

then µ can have at most two parts. If a and b are both less than n, then the number of different µ’s
which can contribute is O(n).

8. Repeating the above step O(n) times we can calculate each term sD1 . . . sDl .

9. Now collecting all the terms, we get the complete decomposition of sα ⊗ sβ .

The step of the algorithm where we use equation (6.3) contributes
(

n
a1 ... al

)
, which can be as bad as ln/

(
n+1
l−1

)
(by Pigeon Hole Principle). This step alone makes this algorithm worse than the one we get from character
theory for large l, unless we can reduce the number of terms we need to deal with by a lot.

The total running time for this algorithm is O(l! · m! · ln · ((l − 1)/n)(l−1) · n2), assuming all polynomial
operations can be done in unit time (which is not true but its cost is only 2O(n) which is dominated by the
ln any way). If one is only interested in the coefficient of one particular sν , one may be able to improve on
the running time.

Conjecture: The decision problem, which given λ, µ, ν tells if gλµν > 0 is polynomial computable in the
input length, i.e. in 〈λ〉+ 〈µ〉+ 〈ν〉.

6.5 Outline of the proof

Now we are in a position to give an outline of the proof of the main result.

s(h,k)⊗s(l,m) =
∑
ν g(h,k)(l,m)νsν , and g(h,k)(l,m)ν = 0 if ν has more than 4 parts. Otherwise let ν = (a, b, c, d).

Then g(h,k)(l,m)(a,b,c,d) is given by a sum of 8 terms each of the form
∑U
r=L 1+min(expr1, expr2), where each

L is in turn given by a max of 2 to 5 terms and each U is given by a min of 2 to 5 terms.

Even though this formula is messy, it is the first formula for gλµν at least in special cases. We know proceed
with the outline of the proof. The proof basically, follows the näıve algorithm of the previous section with a
few tricks thrown in.

From the Jacobi-Trudi identity, we have

s(h,k) = det
(
sh sk+1

sh−1 sk

)
= shsk − sh−1sk+1

and similarly for s(l,m). Hence we have,
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s(h,k) ⊗ s(l,m) = (shsk − sh−1sk+1)⊗ (slsm − sl−1sm+1)
= shsk ⊗ slsm − shsk ⊗ sl−1sm+1

−sh−1sk+1 ⊗ slsm + sh−1sk+1 ⊗ sl−1sm+1

Let A = shsk ⊗ slsm, B = shsk ⊗ sl−1sm+1, C = sh−1sk+1 ⊗ slsm and D = sh−1sk+1 ⊗ sl−1sm+1, so that
s(h,k) ⊗ s(l,m) = A−B − C +D.

Now the expansion of A, can be obtained from equation (6.3) by forming all decompositions D1 + D2 =
(l) ? (m) with |D1| = h and |D2| = k, each term of which can then be evaluated by repeated applications of
the Perri rule.

Similar treatment can be given to the other terms as well. Let A,B,C,D represent the set of configurations
which occur in the expansion of the corresponding term. The main observation, is that one can define a map
I on A ∪B ∪C ∪D to itself such that I2 = Id. Moreover the map is such that for any configuration S for
which I(S) 6= S, the terms in the expansion of s(h,k) ⊗ s(l,m) for S and I(S) cancel each other out. Hence it
will be enough to look at those configurations for which I(S) = S.
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