
Project 2
Join Calculus

CMSC 32102

Version 1.2
May 27, 2003

1 Introduction

The join caluclus is a concurrent programming model proposed by Fournet and Gonthier [FG96].
The join calculus is based on asynchronous message passing. In the abstract, the join calculus has
the following form:

Processes
P ::= c(v)

| let D in P
| P | P

Definitions
D ::= J=>P

| D orD

Join patterns
J ::= c(x)

| J and J

wherec is a channel name,v is a value, andx is a variable. A processP is either a message,
a definition, or the parallel composition of two processes. A definition consists of one or more
guarded processes, where the guards are join patterns. A join pattern is the conjunction of one or
more message patterns. A guard is enabled when there are messages available that match all of its
patterns (messages are matched by channel name). For example, the following process waits for
messages on two out of three channels and sends the result:

signature JOIN =
sig

type ’a jchan
type ’a join

val channel : unit -> ’a jchan

val recv : ’a jchan -> ’a join

val join : (’a join * ’b join) -> (’a * ’b) join

val send : ’a jchan * ’a -> unit

val match : ’a join -> ’a
val matchEvt : ’a join -> ’a CML.event

end

Figure 1: Join interface

let j1(a) and j2(b) => res(a, b)
or j2(a) and j3(b) => res(a, b)
or j3(a) and j1(b) => res(a, b)
in ...

Notice how the declaration form is similar to a CMLselect .

2 The project

For this project, you must implement a join abstraction in CML (i.e., an abstraction that represents
theJ part of the Join calculus). You should package your implementation in a module nameJoin
that matches the interface in Figure 1. The semantics of this interface is as follows:

type ’a jchan is the type of a join channel.

type ’a join is the type of a join of one or more join channels.

channel () returns a new Join channel.

recv jch returns the singleton join for receiving messages on the join channeljch .

join (j1 , j2) returns the join of the two joinsj1 andj2 .

2

send (jch , msg) sends the messagemsg on the join channeljch .

matchEvt j returns an event value for synchronizing on matching the joinj .

match j blocks the calling thread on the joinj until there is a match.

An example of the use of this API, the following code defines a function (f) that waits for
messages on any two of three given join channels:

structure J = Join

fun f (j1, j2, j3) = CML.select [
matchEvt(J.join(J.recv j1, J.recv j2)),
matchEvt(J.join(J.recv j2, J.recv j3)),
matchEvt(J.join(J.recv j3, J.recv j1))

]

This code implements the same pattern as the example in Section 1.

The complete project is due on June 10th. You should mail me a compressed tarball of your
sources with aREADMEfile that gives an overview of your solution.

3 Hints

The implementation of thematchEvt function will require using thewithNack combinator to
create a “transaction manager” thread at synchronization time. The transaction manager will have
to have to query the channels involved in the join for their initial state and then monitor the changes
in state (the state of a channel can be viewed as the number of available messages).

One tricky part of the problem is getting the types right. You will have to separate the tracking
of channel states from the assembly of the final result. Also, your implementation should be able to
handle patterns of the following form:

J.join(J.recv j, J.recv j)

which requires two messages on channelj .

You implementation should be built on CML primitives (you do not need operations from the
Unsafe module or continuations). Furthermore, your implementation shouldnot be monolithic
(i.e., do not use a single server thread to manage all join transactions).

3

4 Document history

1.2 (5/27/03)Fixed a couple of typos and clarified project description.

1.1 (5/20/03)Fixed example code to match changes in API.

1.0 (5/20/03)Initial release.

References

[FG96] C. Fornet and G. Gonthier. The reflexive chemical abstract machine and the join-calculus.
In POPL’96, January 1996.

4

