
Project 1
The Voyeur Shell (2.0)
(with apologies to David Beazely)

CMSC 32102

Version 1.2
April 17, 2003

1 Introduction

The Department of Homeland Security launched a research program in the Winter of 2003 to de-
velop a so-called “Voyeur Shell,” which allows John Ashcroft to keep a lustful eye on everyone’s
Unix commands. While happy with the resulting prototypes, there is a desire to track additional
information. Furthermore, thevsh prototypes were written in C and suffered from buffer-overrun
vulnerabilities. Therefore, a new call has gone out to develop an enhanced implementation ofvsh
in a safe language.

Your task is to write an implementation of thevsh in Concurrent ML. Thevsh is a simple
Unix shell that allows a third party to remotely monitor shell commands. Your shell will have to
support the usual shell features of I/O redirection, pipes, and background processes. But it also has
to provide this clandestine monitoring feature.

2 Description

The input to thevsh is a sequence of commands, each provided on a separate line of input text typed
interactively at the keyboard: Thevshsupports the following command syntax:

Command
::= Program(| Command)opt

| Program&opt

| exit

Program
::= Path Argsopt (< Path)opt (> Path)opt

where aPathhas the following syntax:

Path
::= / opt Filename(/ Filename)∗

Filenames are non-empty sequences of letters, digits, or one of “. ”, “ - ”, “ +”, “ =”, “ @”, or “_.”

2.1 Background jobs

When a program runs, it normally blocks you from performing any other operations until it has
completed. However, you can put a program into the background using the “&” operator. For
example:

progname args &

Detaches the programprogname and runs it in the background. Control is immediately returned to
the command shell where additional commands can be executed. Background jobs should continue
to run even if you quit the shell before they have finished.

2.2 I/O redirection

In addition to the above commands, your shell must support I/O redirection. I/O redirection is
specified using the “<” and “>” operators at the end of a command line. For example, the command

progname args >file.out

directs the standard output ofprogname to the filefile.out and

progname args <file.in

uses the contents of the filefile.in as the standard input to programprogname . Both input and
output redirection may be specified for a single command so your shell will have to check for both.

2.3 Pipes

Your shell also needs to support pipes. A pipe is nothing more than a way of hooking up the standard
output of one program to the standard input to another. A pipe is indicated using the “| ” operator
as follows:

2

progname1 args | progname2 args

Pipes the output of programprogname1 to the input of programprogname2 . For example:

vsh % ls | wc
5 5 28

vsh % foo < infile | bar > outfile

Note that attempting to redirect a programs output and also pipe it to another program is not sup-
ported. For example, the following produces an error message:

vsh % ls > outfile | wc
vsh: illegal command

2.4 The Voyeur interface

To allow secret monitoring, the shell should listen for connections on a network port that is equal
to the process id (pid) + 10000. Remote users should then be able to watch the shell by simply
using thetelnet command. For example, suppose that a user launchesvshand it has a process ID of
11538 (you can useps to find the process ID). The the following command will connect to thevsh:

% telnet localhost 21538
Trying 127.0.0.1...
Connected to localhost.
Escape character is ’ˆ]’.
[Welcome to the vsh shell]

Once a user connects to thevsh, the user should see all commands and all output from those
commands displayed as long as the telnet connection stays open. Commands should be prefixed
with the string “[vsh] ” and the output from a commandprogname should be prefixed with
“ [progname] .” For example, the above command sequence might produce the following trace:

[vsh] ls | wc
[ls]bar.h\nbaz.c\nfoo\nfoo.c\nfoo.out
[wc]\t7\t5\t28\n
[vsh]foo < infile | bar > outfile

Note that the newlines and tab characters thatwc uses to format its output are escaped.1

Note that thevshshould support multiple connections to the voyeur interface.

1You can use the functionString.toString to convert an arbitrary string into a printable string.

3

3 The project

I recommend that you break the project into four steps. You are required to hand in the result of the
first step and the final result.

3.1 Step 1: Design

The first step is to design the architecture of your implementation. For this purpose, I recommend
thinking how you want to map the major components of the system onto CML threads. You should
also think about how to structure the program into modules. Your design document is due in class
on Tuesday April 22.

3.2 Step 2: Command parsing

The second step is to code up a parser for the command language.Note: you should work on
Step 2 in parallel with Step 1. As a guide, I will supply a scanner that takes a line of input and
returns a list of tokens, where a token has the following type:

datatype token
= Path of string
| Pipe
| Lt
| Gt
| Amp

You should write a command-parser module with the following signature:

signature PARSER =
sig

exception SyntaxError
val parseLine : string -> Command.cmd

end

TheparseLine function can be implemented as

fun parseLine s = parse (Scanner.scanLine s)

whereparse takes a list of tokens and returns a parsed command. I recommend using a simple
recursive descent parser to implement theparse function.

4

3.3 Step 3: Command processing

Once you have a parser for the shell commands, you should implement the shell interpreter. Start
with basic command execution and then add background jobs, redirection, and pipes.

3.4 Step 4: Voyeur interface

Once you have the basic shell working, add the voyeur mechanism. The complete project is due on
Thursday, May 8th.

4 Document history

1.2 (4/17/03)Changed syntax of file names and thePARSERsignature to agree with the sample
implementation.

1.1 (4/15/03)Fixed spelling errors and the example. Also added clarification on combining output
redirection and pipes.

1.0 (4/15/03)Initial release.

5

