
Lecture 9
Code Generation
Instruction Selection



Instruction Selection

• Mapping IR trees to assembly instructions

• Tree patterns

• Retain virtual registers (temps)

• Algorithms for instruction selection

• Maximal munch

• Dynamic programming

• Tree grammars

• Instruction selection for the tiger compiler

• Generic assembly instructions (Assem.instr)



Instructions and Tree Patterns
ADD ri ← rj + rk

+ MUL ri ← rj * rk *

LOAD ri ← M[rj + c]

FETCH

MEM

FETCH

MEM

+

CONST

FETCH

MEM

+

CONST

FETCH

MEM

CONST

STORE M[ri + c] ← rj
MOVE

MEM

MOVE

MEM

+

CONST

MOVE

MEM

+

CONST

MOVE

MEM

CONST



Tiling with Instruction Patterns
a[i] := x
where i = TEMPi

a = M[fp + ca] = ca($fp)

x = M[fp + cx] = cx($fp)
  

MOVE

* +

FETCH

FP

MEM

FP CONST(cx)

MEM

+

MEM

+

TEMPi

CONST(ca)

CONST(4)

FETCH



Tiling with Instruction Patterns

a[i] := x 

MOVE

* +

FETCH

MEM

FP CONST(cx)

MEM

+

TEMPi CONST(4)

MOVEM    M[ri ] ← M[rj] MOVE

MEM FETCH

MEM

FP

MEM

+

CONST(ca)

FETCH



Optimal, Optimum Tilings

A tiling of an IR tree with instruction patterns is optimum if the 
set of patterns has the least “cost” by some measure, e.g.:

1. the smallest number of patterns (producing the
   shortest instruction sequence, thus smallest code size)
2. total number of cycles to execute, thus fastest code

A tiling is optimal if no two adjacent tiles can be combined into
a single tile of lower cost.

optimum ⇒ optimal



Maximal Munch
1.  Choose the “largest” tile that matches at the root of the IR tree (this 
is the munch)

2.  Recursively apply maximal much at each subtree of this munch.

3.  Generate the instruction for the first munch, using source and 
destination registers produced by processing the subtrees.

munch

MOVE

* +

FETCH

FP

MEM

FP CONST(cx)

MEM

+

MEM

+ TEMPi
CONST(ca)

CONST(4)

subtrees



Implementing Maximal Munch

ML pattern matching is natural way to implement maximal munch.

fun munchStm(MOVE(MEM(BINOP(PLUS,e1,CONST i)),e2) =
    (munchExp e1; munchExp e2; emit “STORE”)
  | munchStm(MOVE(MEM(BINOP(PLUS,CONST i,e1)),e2) =
    (munchExp e1; munchExp e2; emit “STORE”)
  | munchStm(MOVE(MEM e1,FETCH(MEM e2))) =
    (munchExp e1; munchExp e2; emit “STORE”)
  | ...

fun munchExp(BINOP(PLUS,e1,CONST i)) =
    (munchExp e1; emit “ADDI”)
  | munchExp(BINOP(PLUS,CONST i,e1)) =
    (munchExp e1; emit “ADDI”)
  | munchExp(BINOP(PLUS,e1,e2)) =
    (munchExp e1; munchExp e2; emit “ADD”)
  | ...



Dynamic Programming

Assume that we have a cost function assigning a cost (size, time) to 
each instruction.  We want to compute

   Tile(S) = (T, c)

where T is an optimal tiling and c is its cost.

Try each top-level tile that matches at root of S:  say P1, P2, P3

For each of these tiles, there is a set of residual subtrees:
     P1  ⇒ {S1,1, S1,2}
     P2  ⇒ {S2,1, S2,2, S2,3}
     P3  ⇒ {S3,1, S3,2}

For each subtree, recursively compute the best tiling and its cost:
     Tile(Si,j) = (Ti,j, ci,j)

Choose T = Pi(Ti,1, ..., Ti,n) such that c = ci,1 + ... +  ci,n is minimal.



Tree Grammars

We don't use things like ML-Burg any more, because it is really over-kill --- 
maximal munch does just as well and is easier to write. The problems with burg 
are the following:

•  It does not do input rewriting, therefore you either have to code up all the 
commutative rules, or  ensure the input is in some canonical form (immediates 
as second operand, etc).  This results in a lot of rules, and corresponding 
semantic actions that need to be written.

•  One ends up inventing many terminals to represent different sized 
immediates, e.g, INT0, INT4, INT8, INT255, ... etc. INT0, INT4, and INT8 may 
be used to represent the corresponding constants, and INT255 is anything 
between 0..255. At this point a lot of hand crafting is required in the rules and 
semantic actions.

•  Instruction selection is just the beginning of the story. Constant propagation/
folding, spilling, code motion, and others may open new opportunities for better 
instruction selection. Thus there is little point in trying to be optimal in the initial 
instruction selection phase.

Lal George, author or MLRISC



Maximal Munch for Tiger

How to represent (MIPS) instructions?

datatype instr
  = OPER of
      {assem: string,
       dst: temp list,
       src: temp list,
       jump: label list option}
  | LABEL of {assem: string, lab: label}
  | MOVE of
      {assem: string, 
       dst: temp,
       src: temp}



Instructions

Example instructions:

sw $ta 4($tb)

  OPER{assem = “sw `s0, 4(`s1)”,
       dst = [],
       src = [tempa,tempb],

       jump = NONE}

j L0

  LABEL{assem = “L0”, lab = labelL0}

move $ta, $tb

  MOVE{assem = “move `d0, `s0”,
       dst = tempa,

       src = tempb}



Formating Instructions

val format : (temp -> string) -> instr -> string

format sayTemp
 (OPER{assem = “sw `s0, 4(`s1)”,
       dst = [],
       src = [tempa,tempb],

       jump = NONE})

`s0 ⇒ sayTemp(nth(src,0)) = “$t3”
`s1 ⇒ sayTemp(nth(src,1)) = “$fp”

Result:  “sw $t3, 4($fp)”

sayTemp maps template variables (by number)
to names of actual registers



Munch cases

| munchStm (T.CJUMP (rop, e1, e2, t, f)) =
  1. rop translates to a corresponding conditional

branch opcode
  2. arguments e1 and e2 are munched by munchExp,
     returning two source temps (src1, src2)
  3. there are two jump labels, t and f

 OPER{assem =
        concat[oper, " `s0, `s1, ", Temp.labelToString t],
      src = [src0,src1],
      dst = [],
      jump = SOME [t, f]}

After register allocation, this might format to:

 “bgt $t1, $t3, L5”   



Munch cases

| munchStm (T.MOVE (T.TEMP d, T.FETCH (T.MEM saddr))) =

This could translate simply to

  OPER{assem = "lw `d0, `s0",
       src = [munchExp saddr], dst = [d],
       jump = NONE}

But some special cases of saddr can be optimized using
addressing modes:

  saddr = BINOP(PLUS, e, CONST c)
  saddr = BINOP(PLUS, CONST c, e)
    ⇒  “lw $t2 c($t3)”
  saddr = BINOP(MINUS, e, CONST c)
    ⇒  “lw $t2 -c($t3)”



Questions

1. Do we need a munchExp case for ESEQ?

  | munchExp (T.ESEQ (stm, exp)) =

2. Do we need a munchLexp function?  If not, why not?


