
Lecture 8

Basic Blocks and Traces

Canonical Trees

signature CANON =
sig

 val linearize : Tree.stm -> Tree.stm list

 val basicBlocks : Tree.stm list ->
 (Tree.stm list list * Tree.label)

 val traceSchedule : Tree.stm list list * Tree.label ->
 Tree.stm list

end (* signature CANON *)

Canonical Trees

signature CANON =
sig

 val linearize : Tree.stm -> Tree.stm list
 (* From an arbitrary Tree statement, produce a list of
 canonical trees satisfying the following properties:

 1. No SEQ's or ESEQ's
 2. The parent of every CALL is an EXP(..) or a

 MOVE(TEMP t,..)
 *)

 val basicBlocks : Tree.stm list ->
 (Tree.stm list list * Tree.label)

 val traceSchedule : Tree.stm list list * Tree.label ->
 Tree.stm list

end (* signature CANON *)

Basic Blocks
signature CANON =
sig

 val linearize : Tree.stm -> Tree.stm list

 val basicBlocks : Tree.stm list ->
 (Tree.stm list list * Tree.label)
 (* From a list of cleaned trees, produce a list of
 basic blocks satisfying the following properties:

 1. and 2. as above;
 3. Every block begins with a LABEL;
 4. A LABEL appears only at the beginning of a block;
 5. Any JUMP or CJUMP is the last stm in a block;
 6. Every block ends with a JUMP or CJUMP;
 Also produce the "label" to which control will be passed
 upon exit.

 *)

 val traceSchedule : Tree.stm list list * Tree.label ->
 Tree.stm list

end (* signature CANON *)

Traces
signature CANON =
sig

 val linearize : Tree.stm -> Tree.stm list

 val basicBlocks : Tree.stm list ->
 (Tree.stm list list * Tree.label)

 val traceSchedule : Tree.stm list list * Tree.label ->
 Tree.stm list
 (* From a list of basic blocks satisfying properties 1-6,

 along with an "exit" label, produce a list of stms such
 that:

 1. and 2. as above;
 7. Every CJUMP(_,t,f) is immediately followed by LABEL f.
 The blocks are reordered to satisfy property 7; also
 in this reordering as many JUMP(T.NAME(lab)) statements
 as possible are eliminated by falling through into

 T.LABEL(lab).
 *)

end (* signature CANON *)

Canonical Trees
Canonical trees are those that:

 1. Have no SEQ or ESEQ subterms

 2. CALLs appear only as components of stms, not as
 subexpressions, i.e. a CALL node has parent of the
 form EXP(_) or MOVE(TEMP(t),_)

The idea is to separate out statements with side-effects
from pure expressions. This allows freedom to change the
order of evaluation in expressions and simplifies the
interaction between expression evaluation (function
calls in particular), and side-effects like assignment.

Linearization pulls stms and function calls to the top and
front, linked with SEQ and ESEQ. Then the SEQ and ESEQ
chain can be simplified to a list of canonical trees.

Canonical Tree Transformation

BINOP

CALL

ESEQ

MOVE FETCH

ESEQ

BINOP

CONST

MOVE

FETCH

MOVE MOVE

CALL

FETCH

MOVE BINOP

FETCH BINOP

CONST FETCH

Canonical Tree Transforms
A number of term transformations are used to rearrange
expressions into canonical form (Figure 8.1). E.g.:

ESEQ(s1,ESEQ(s2,e)) ==> ESEQ(SEQ(s1,s2),e)

BINOP(op,(ESEQ(s,e1),e2) ==>
ESEQ(s,(BINOP(op,e1,e2))

BINOP(op,e1,(ESEQ(s,e2)) ==>
ESEQ(MOVE(TEMP tnew, e1),

 ESEQ(s,(BINOP(op,FETCH(TEMP tnew),e2))

BINOP(op,e1,(ESEQ(s,e2)) ==> ESEQ(s,BINOP(op,e1,e2))

if s and e1 commute (i.e. are noninterfering,
the effects performed by s will not change the
value computed by e1)

