Basic Blocks and Traces

Lecture 8

Canonical Trees

signature CANON =
sig

val linearize : Tree.stm -> Tree.stm list

val basicBlocks : Tree.stm list ->
(Tree.stm list list * Tree.label)

val traceSchedule : Tree.stm list list * Tree.label ->
Tree.stm list

end (* signature CANON *)

Canonical Trees

signature CANON =

sig

val

val

val

linearize : Tree.stm -> Tree.stm list
(* From an arbitrary Tree statement, produce a list of
canoni cal trees satisfying the following properties:
1. No SEQ's or ESEQ's
2. The parent of every CALL is an EXP(..) or a
MOVE (TEMP t,..)

*)

basicBlocks : Tree.stm list ->
(Tree.stm list list * Tree.label)

traceSchedule : Tree.stm list list * Tree.label ->
Tree.stm list

end (* signature CANON *)

Basic Blocks

signature CANON =
sig

val linearize : Tree.stm -> Tree.stm list

val basicBlocks : Tree.stm list ->
(Tree.stm list list * Tree.label)
(* From a list of cleaned trees, produce a list of
basic blocks satisfying the following properties:
l. and 2. as above;
3. Every block begins with a LABEL;
4. A LABEL appears only at the beginning of a block;
5. Any JUMP or CJUMP is the last stm in a block;
6. Every block ends with a JUMP or CJUMP;
Also produce the "label" to which control will be passed
upon exit.

*)

val traceSchedule : Tree.stm list list * Tree.label ->
Tree.stm list

end (* signature CANON *)

Traces

signature CANON =
sig

val linearize : Tree.stm -> Tree.stm list

val basicBlocks : Tree.stm list ->
(Tree.stm list list * Tree.label)

val traceSchedule : Tree.stm list list * Tree.label ->
Tree.stm list
(* From a list of basic blocks satisfying properties 1-6,

along with an "exit" label, produce a list of stms such
that:

l. and 2. as above;

7. Every CJUMP(,t,f) is immediately followed by LABEL f.
The blocks are reordered to satisfy property 7; also
in this reordering as many JUMP(T.NAME(lab)) statements

as possible are eliminated by falling through into
T.LABEL(lab).

*)

end (* signature CANON *)

Canonical Trees

Canonical trees are those that:
1. Have no SEQ or ESEQ subterms

2. CALLs appear only as components of stms, not as
subexpressions, i.e. a CALL node has parent of the
form EXP() or MOVE(TEMP(t),)

The idea is to separate out statements with side-effects
from pure expressions. This allows freedom to change the
order of evaluation in expressions and simplifies the
interaction between expression evaluation (function

calls in particular), and side-effects like assignment.

Linearization pulls stms and function calls to the top and
front, linked with SEQ and ESEQ. Then the SEQ and ESEQ
chain can be simplified to a list of canonical trees.

Canonical Tree Transformation

BINOP

CALL ESEQ
ESEQ MOVE BINOP
MOVE FETCH CONST FETCH
MOVE MOVE MOVE BINOP
CALL FETCH BINOP

B8 N\

CONST FETCH

Canonical Tree Transforms

A number of term transformations are used to rearrange
expressions into canonical form (Figure 8.1). E.g.:

ESEQ(S1,ESEQ(s2,e)) ==> ESEQ(SEQ(sl,s2),e)

BINOP(0p, (ESEQ(S,el),e2) ==>
ESEQ(S, (BINOP(0p,el,e2))

BINOP(Op,el, (ESEQ(S,e2)) ==>
ESEQ(MOVE(TEMP t . €1),

ESEQ(S, (BINOP(0p,FETCH(TEMP t ..),€2))

BINOP(Op,el, (ESEQ(S,e2)) ==> ESEQ(s,BINOP(0Op,el,e2))

if s and el commute (i.e. are noninterfering,
the effects performed by S will not change the
value computed by el)

