Bottom Up Parsers

Bottom-Up Parsing

* Construct parse tree bottom-up, from leaves (tokens) to root S
* Always construct right-most derivation, but in reverse order
* Algorithms:

shift-reduce

LR parsing (LR(0), SLR, LR(k), LALR(K), ...)

Shift-Reduce Parsing

Shift-Reduce: look for substrings that match |hs of a production
and reduce them by applying the production in reverse.

Grammar Parsing as derivation in reverse

1) S = aAcBe abbcde shift aAc de shift

2) A = Ab a bbcde shift aAcd e red 4

3) A= Db ab bcde red 3 aAcB e shift

4) B = d aA bcde shift aAcBe red 1
aAb cde red 2 S

aA cde shift
Ambiguity!

The underlined substrings
aAb cde are called handles.

red‘a// \\\ied 3

aA cde aAA cde

Some terminology

A rightmost derivation is one where the rightmost nonterminal is
replaced at each step. Write a = B for a rightmost derivation step.

S =>*qgAw = aBw=>*v (wherew,ve T*)

Here B is a handle -- a substring that is the lhs of a production in a
rightmost derivation (for v). If s = 7, then g is called a right
sentential form.

The handles are the substrings that should be reduced in a shift-
reduce parse.

aAb cde <, aA cde <*S aAb cde <3 aAA cde

\ \not a handle

aAcde is a right sentential form, while aaacde is not.

a handle

= W N

' e e’ o

W n

141

Shift-Reduce Parsing lllustrated

aAcBe

0. O

= W N

' e e’ o

W n

141

Shift-Reduce Parsing lllustrated

aAcBe

0. O

= W N

' e e’ o

W n

141

Shift-Reduce Parsing lllustrated

aAcBe

0. O

= W N

' e e’ o

W n

141

Shift-Reduce Parsing lllustrated

aAcBe

0. O

O «—
O «—T

O =
Q

= W N

' e e’ o

W n

141

Shift-Reduce Parsing lllustrated

aAcBe

LR parsers

Problem: find the handles (and corresponding productions)

Solution: define a DFA that determines when to shift, when to
reduce, when to accept, when to signal error

input

Sm
Xm
... [*—1 LR Parsing Engine
S1 |
X4 ;
S0
Parsing Tables

stack
actions ‘ gotos

Advantages of LR Parsers

LR parsers can handle virtually all programming language
constructs expressible in context free grammars

LR parsing is most general nonbacktracking shift-reduce parsing
method, yet is efficiently implementable

Class of grammars parsed by LR parsers is larger than that
parsed by predictive parsers

LS parsers can detect syntactic errors as soon as possible, given
left to right scan of input

Building LR Parser Tables

Grammar

0) S' — SS

1) S = aAcBe

2) A — Ab

3) A2 Db

4) B —» d

Items

S — .aAcBe A — .Ab B — .d
S = a.AcBe A — A.b B — d.
S — aA.cBe A — Ab.

S — aAc.Be

S — aAcB.e A - .b S’ — .SS
S — aAcBe. A — Db. S’ =& S.$

Building LR Parser DFA

1

S’ — .SS
S — .aAcBe

10

— S —>|S’ — S.$|

A — .Ab
A 2 .b
——
b
I
|A—>b.|
Grammar
0) S — SS
1) S = aAcBe
2) A = Ab
3) A * Db
4) B @ d

LR Parser Table

a b C d e S S
1 s2 10
2 s3
3 r3 r3 r3 r3 r3 r3
4 s/ s5
5 S6
6 r4 r4d r4 r4 r4d r4
7 r2 r2 r2 r2 r2 r2
8 s9
9 rl rl rl rl rl rl

=
o

