

Lecture 3
Parsing

Syntax Analysis

• Transform a sequence of tokens into a parse tree:

• Syntactic structure is specified using contex-free grammars

• A parse tree is a representation of the hierarchical structure of a
phrase in the language.

• Secondary tasks: syntax error detection and recovery

lexical
analyzer

parsersource
program

get token

token

parse
tree

RE CFG

Syntax Analysis
function f(a:int,b:string) = g(1+a)

FUNCTION
ID(f)
LPAREN
ID(a)
COLON
ID(int)
COMMA
ID(b)
COLON
ID(string)
RPAREN
EQ
ID(g)
LPAREN
INT(1)
PLUS
ID(a)
RPAREN

Tokens

fundec

tyf

tyf

exp

expl

exptyfields

exp

FUNCTION ID LPAREN RPAREN EQ

ID LPAREN RPAREN

COMMA PLUSID COLON ID

ID COLON ID INT ID

Parse Tree

Main Parsing Problems

• How to specify the syntactic structure of a programming language?

use Context-Free Grammars (CFG)

• How to parse: given CFG and token stream, how to build the parse
tree?

• bottom up parsing

• top down parsing

• How to make sure parse tree is unique? (the ambiguity problem)

• Given a CFG, how to build a parser?

use ML-Yacc parser generator

• How to detect, report, and recover from syntax errors

Grammars
A grammar is a precise specification of a programming language
syntax.

A grammar is normally specified using Bachus-Naur Form (BNF):

1. two sets of symbols
terminal: if, id, (,) (the lexical tokens)
nonterminal: stmt, expr (the phrase classes)

2. a set of productions or rewriting rules

stmt -> if expr then stmt else stmt
expr -> expr + expr | expr * expr
 | (expr) | id

The latter abbreviates the 4 rules:

expr -> expr + expr
expr -> expr * expr
expr -> (expr)
expr -> id

Context-Free Grammars (CFG)
A context-free grammar is defined as a quadruple <T, N, P, S>, where

T is a finite set of terminal symbols
N is a finite set of nonterminal symbols
P is a finite set of productions:

N → σ with N ∈ N and σ ∈ (N∪ T)*

S ∈ N is the start symbol

Example

T = { +, *, (,), id }

N = { E }

P = { E → E + E, E → E * E, E → (E), E → id }
S = E

BNF: E → E + E | E * E | (E) | id

Derivations
A sentence is a string of terminal symbols (or tokens).

A derivation is a sequence of strings in (N∪ T)*, starting with the
start symbol S, where each string is produced by replacing a
nonterminal with the rhs of one of its productions.

E
E + E
E + E * E
E + id * E
(E) + id * E
(E) + id * id
(E * E) + id * id
(id * E) + id * id
(id * id) + id * id

a sentence (no nonterminals)

E
E + E
E + E * E
E + E * id
E + id * id
(E) + id * id
(E * E) + id * id
(E * id) + id * id
(id * id) + id * id

a leftmost derivation

Multiple Derivations

σ

σ4

S

σ1

σ2
σ5

σ3

σ6

σ8σ7 σ9

S →* σ

There will be multiple derivations taking the start symbol
S to a terminal sentence σ, depending on order in which
productions are applied. Each path determines a parse tree.

Language of a CFG

A derivation is a sequence

S → σ1 → σ2 → σ3 → ... → σn (or S →* σn)

where σn consists only of terminal symbols (σn ∈ T*).

The language L(G) defined by grammar G = <T, N, P, S> is the set
of strings of terminals that are derivable from S:

L(G) = { σ ∈ T* | S →* σ }

Parse Trees
A parse tree is a graphical representation of a derivation, but the
order of nonterminal replacements is not indicated.

(id * id) + id * id

E

)(

+E E

EE *E

EE *

id id

idid

Ambiguity
A single sentence can have multiple parse trees, meaning that its
structure in ambiguous. We say the CFG is ambiguous.

E

E

*

idEE

E

+

idid

E

E

+

id E

E

*E

id id

id + id * id

Removing Ambiguity
There are techniques for transforming a grammar to remove
certain kinds of ambiguities.

id + id * id

E → E + E
E → E * E
E → (E)
E → id

E → E + T
T → T * F
F → (E)
F → id

E

E

+

F

T

*T

F id

id

T

F

id

Ambiguous

Unambiguous

Idea: Express precedence through new
nonterminals.

Top-Down parsers

A top-down parser tries to construct a parse tree top-down as it
scans the token stream from left to right.

This can require backtracking, but most programming languages can
be parsed without backtracking.

Recursive descent or predictive parsing is a type of top-down parsing
that can be used when:

1) production rules can be distinguished based on the possible
first tokens of sentences derived from their rhs (FIRST sets)

2) there are no left-recursive productions (e.g. E → E + E)

Recursive Descent

S → if E then S else S L → end
S → begin S L L → ; S L
S → print E
E → num = num

First sets:

FIRST(if E then S else S) = {if}
FIRST(begin S L) = {begin}
FIRST(print E) = {print}

FIRST(end) = {end}
FIRST(; S L) = {;}

FIRST(num = num) = {num}

Note that each rule is uniquely determined by the first
symbol of the sentences it generates.

Recursive Descent Parser

datatype token = IF | THEN | ELSE | BEGIN | END |
 | PRINT | SEMI | NUM | EQ

val nexttok = ref(getToken())
fun match t = if !nexttok = t
 then nexttok := getToken()
 else error()

fun S() = case !nexttok
 of IF => (match IF; E(); match THEN; S();
 match ELSE; S())
 | BEGIN => (match BEGIN; S(); L())
 | PRINT => (match PRINT; E())

and L() = case !nexttok
 of END => match END
 | SEMI => (match SEMI; S(); L())

and E() = (match NUM; match EQ; match NUM)

Recursive Descent Parser

Notes:

There is a set of recursive functions, one representing each
nonterminal symbol.

For each of these functions there is a case rule for each
production for that nonterminal, guarded by the first symbol
generated by the rhs of the production.

Each production has a unique first symbol that can be used to
distinguish it from other possible productions. In general there
might be a set of possible first symbols, but these sets would
need to be disjoint for the different productions so they could
be used to “predict” the proper production.

Left Recursive Productions

A production like

E → E + T

is bad because it would lead to a function definition for E of the
form:

fun E() = (E(); match PLUS; T())

which would clearly not terminate -- it would not even look at the
next token.

There is a systematic way to transform productions to
eliminate left recursion. This results in:

E → T R
R → + T R
R → ε

Eliminating Left Recursion

Transform a left recursive production of the form

A → A α
A → β

by introducing a new nonterminal R with productions

A → β R
R → α R
R → ε

This can be generalized if there are several left recursive productions:

A → A α
A → A γ
A → β

A → β R
A → γ R
R → α R
R → ε

⇒

Top-Down parsers

We need to formally define the set of possible first tokens
generated from a sentence α ∈ (N∪ T)* (a production rhs).

FIRST(α) is the set of possible first tokens that can occur in
sentences generated from α. If the string α starts with a
nonterminal, then that nonterminal constitutes the FIRST set.
If α starts with a terminal, we may have to resort to the more
complicated algorithm described in Algorithm 3.13 (Appel, p. 49).

