
 

Lecture 3
Parsing



Syntax Analysis

• Transform a sequence of tokens into a parse tree:

• Syntactic structure is specified using contex-free grammars

• A parse tree is a representation of the hierarchical structure of a 
phrase in the language.

• Secondary tasks:  syntax error detection and recovery
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Syntax Analysis
function f(a:int,b:string) = g(1+a)
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Main Parsing Problems

• How to specify the syntactic structure of a programming language?

use Context-Free Grammars (CFG)

• How to parse: given CFG and token stream, how to build the parse 
tree?

• bottom up parsing

• top down parsing

• How to make sure parse tree is unique?  (the ambiguity problem)

• Given a CFG, how to build a parser?

use ML-Yacc parser generator

• How to detect, report, and recover from syntax errors



Grammars
A grammar is a precise specification of a programming language 
syntax.

A grammar is normally specified using Bachus-Naur Form (BNF):

1.  two sets of symbols
terminal:  if, id, (, ) (the lexical tokens)
nonterminal:  stmt, expr (the phrase classes)

2.  a set of productions or rewriting rules

stmt -> if expr then stmt else stmt
expr -> expr + expr | expr * expr
      | ( expr ) | id

The latter abbreviates the 4 rules:

expr -> expr + expr
expr -> expr * expr
expr -> ( expr )
expr -> id



Context-Free Grammars (CFG)
A context-free grammar is defined as a quadruple <T, N, P, S>, where

T is a finite set of terminal symbols
N is a finite set of nonterminal symbols
P is a finite set of productions:  

N → σ    with  N ∈ N and σ ∈ (N∪ T)*

S ∈ N is the start symbol

Example

T = { +, *, (, ), id }

N = { E }

P = { E → E + E, E → E * E, E → (E), E → id }
S = E 

BNF:    E → E + E | E * E | ( E ) | id



Derivations
A sentence is a string of terminal symbols (or tokens).

A derivation is a sequence of strings in (N∪ T)*, starting with the
start symbol S, where each string is produced by replacing a 
nonterminal with the rhs of one of its productions.

E
E + E
E + E * E
E + id * E
(E) + id * E
(E) + id * id
(E * E) + id * id
(id * E) + id * id
(id * id) + id * id        

a sentence (no nonterminals)

E
E + E
E + E * E
E + E * id
E + id * id
(E) + id * id
(E * E) + id * id
(E * id) + id * id
(id * id) + id * id

a leftmost derivation



Multiple Derivations
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There will be multiple derivations taking the start symbol
S to a terminal sentence σ, depending on order in which
productions are applied.  Each path determines a parse tree.



Language of a CFG

A derivation is a sequence

S → σ1 → σ2 → σ3 →  ... → σn       (or S →* σn )

where σn consists only of terminal symbols (σn ∈ T*).

The language L(G) defined by grammar G = <T, N, P, S> is the set
of strings of terminals that are derivable from S:

L(G) = { σ ∈ T* | S →* σ }



Parse Trees
A parse tree is a graphical representation of a derivation, but the
order of nonterminal replacements is not indicated.
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Ambiguity
A single sentence can have multiple parse trees, meaning that its 
structure in ambiguous.  We say the CFG is ambiguous.
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Removing Ambiguity
There are techniques for transforming a grammar to remove 
certain kinds of ambiguities.

id + id * id

E → E + E 
E → E * E
E → (E)
E → id

E → E + T
T → T * F
F → (E)
F → id
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Idea:  Express precedence through new
nonterminals.



Top-Down parsers

A top-down parser tries to construct a parse tree top-down as it
scans the token stream from left to right.

This can require backtracking, but most programming languages can 
be parsed without backtracking.

Recursive descent or predictive parsing is a type of top-down parsing
that can be used when:

1) production rules can be distinguished based on the possible
first tokens of sentences derived from their rhs (FIRST sets)

2) there are no left-recursive productions (e.g.  E → E + E )



Recursive Descent

S → if E then S else S L → end
S → begin S L L → ; S L
S → print E
E → num = num

First sets:

FIRST( if E then S else S ) = {if}
FIRST( begin S L ) = {begin}
FIRST( print E ) = {print}

FIRST( end ) = {end}
FIRST( ; S L ) = {;}

FIRST( num = num ) = {num}

Note that each rule is uniquely determined by the first 
symbol of the sentences it generates.



Recursive Descent Parser

datatype token = IF | THEN | ELSE | BEGIN | END |
               | PRINT | SEMI | NUM | EQ

val nexttok = ref(getToken())
fun match t = if !nexttok = t
              then nexttok := getToken()
              else error()

fun S() = case !nexttok
            of IF => (match IF; E(); match THEN; S();
                      match ELSE; S())
             | BEGIN => (match BEGIN; S(); L())
             | PRINT => (match PRINT; E())

and L() = case !nexttok
            of END => match END
             | SEMI => (match SEMI; S(); L())

and E() = (match NUM; match EQ; match NUM) 



Recursive Descent Parser

Notes:

There is a set of recursive functions, one representing each
nonterminal symbol.

For each of these functions there is a case rule for each
production for that nonterminal, guarded by the first symbol
generated by the rhs of the production.

Each production has a unique first symbol that can be used to
distinguish it from other possible productions.  In general there
might be a set of possible first symbols, but these sets would 
need to be disjoint for the different productions so they could
be used to “predict” the proper production.



Left Recursive Productions

A production like

E → E + T

is bad because it would lead to a function definition for E of the
form:

fun E() = (E(); match PLUS; T())

which would clearly not terminate -- it would not even look at the
next token. 

There is a systematic way to transform productions to 
eliminate left recursion.  This results in:

E → T R
R → + T R
R → ε



Eliminating Left Recursion

Transform a left recursive production of the form

A → A α
A → β

by introducing a new nonterminal R with productions

A → β R
R → α R
R →  ε

This can be generalized if there are several left recursive productions:

A → A α
A → A γ
A → β

A → β R
A → γ R
R → α R
R →  ε

⇒



Top-Down parsers

We need to formally define the set of possible first tokens 
generated from a sentence α ∈ (N∪ T)* (a production rhs).

FIRST(α) is the set of possible first tokens that can occur in 
sentences generated from α.  If the string α starts with a 
nonterminal, then that nonterminal constitutes the FIRST set.
If α starts with a terminal, we may have to resort to the more
complicated algorithm described in Algorithm 3.13 (Appel, p. 49).


