Lesson 2
Lexical Analysis

CS 226/326
Spring 2003



Lexical Analysis

e Transform source program (a sequence of characters) into a
sequence of tokens.

source
program

e [exical structure is specified using regular expressions

lexical
analyzer

<

get token

e Secondary tasks

parser

|. discard white space and comments

2. record positional attributes (e.g. char positions, line numbers)

parse
tree



Example Program

A sample source program in Tiger

let

function g(a:int) = a
in

g(2,"str")
end

What are the tokens?

LET FUNCTION ID “g”
LPAREN ID “a” COLON

ID “int” RPAREN EQ

ID “a” IN ID “g”
LPAREN INT “2" COMMA

STRING “str” RPAREN END



Tokens

Tokens Text Description
LET let keyword LET
END end keyword END
PLUS + arithmetic operator

LPAREN ( punctuation

COLON X punctuation

STRING “str” string

RPAREN ) punctuation
INT 46 integer literal
ID g,a,int variables, types
EQ =

EOF

end of file




Strings

Alphabet: 2 — a set of basic characters or symbols

* finite or infinite, but we will only be concerned with finite 2

e e.g.printable Ascii characters

Strings: = — finite sequences of symbols from X

® e.g. € (the empty string), abc, *?x 2

Language: L € =™ - a set of strings

e ecg L={¢ a, aa, aaa, ...}

Concatenation: s [}t — concatenation of strings s and t

e eg abc [xy = abcxy

(Z*,[Je> is a semigroup

Product of languages: L, [, ={s[d]|s

L, &t

L.}



Regular Expressions

Regular expressions are a small language for describing
languages (i.e. subsets of ).

Regular expressions are defined by the following grammar:

M= a -- a single symbol (a.  2)
M, | M, -- alternation
M, [M, -- concatenation (also M M, )
€ -- epsilon
M* -- repetition (0 or more times)
Examples:
(a[lb)|e
(0 01 Jo

b*(abb*)*(ale)



Regular Expressions

The previous forms of regular expressions are adequate, but
for convenience we add some redundant forms that could be
defined in terms of the basic ones.

M= ...
M* -- repetition (I or more times)
M? -- 0 or | occurrence of M
[a-2] -- ranges of characters (alternation)
. -- any character other than newline (\n)
“abc” -- literal sequence of characters

Defs: MT=MM*
M?=M| e
[a-z] =(a|b]|c]|.. | 2)
“abc” = a[b[¢



Meaning of Regular Expressions

The meaning of regular expressions is given by a function L

from regular expressions (re’s) to languages (subsets of ™).
L is defined by the equations:

L(a) = {a}
LM, |M)=LM,) LM,

LM, M, = L(M,)) OLM,)
L(e) = {e}
LM™) = {e} | (L(M) OLM™))

Examples

L((a D) | €) = {e, ab}
L((0 [J1)* [J0) = even binary numbers

L(b*(abb™)*(al€)) = strings of a, b with no consecutive a’s
g



Using R.E.s to Define Tokens

Regular expressions are used to define token classes in a
specification of lexical structure:

if (IF) -- if keyword
[a-z][a-20-9]* (ID(str)) -- identifier
[0-917 (NUM(str)) -- integer const
([0-91F".7[0-91*)|([0-9]1*".7[0-9]7) (REAL(str))
-- real const
("-="[a-2]*"\n") (continue()) -- comment
(" "|"\t”|"\n")?* (continue()) -- white space
(error();continue())
-- error

Patterns are matched “top-down”, and the longest match is
preferred.



Choosing among Multiple Matches

if (IF) -- if keyword
[a-z][a-20-9]* (ID(str)) -- identifier

Consider string“i£8”. The initial segment“if” matches the
first r.e. while the whole string is matches the second r.e. In

this case we choose the longest possible match, recognizing

the string as an identifier.

Consider “if 8”. Both the first and second r.e/s match the
initial segment“i£” and no r.e. matches the entire string (or
“if 7 for that matter). In this case we choose the first
matching r.e. and recognize the if keyword.

Summary: the longest match is preferred, and ties are resolved in
favor of the earliest match.



Homework Assignment |

|. Program | (p. 10)
file: progl.sml

2. Exercise I.1(a,b,c) (p. 12)
file:ex!| |.sml



Finite State Machines

The r.e. recognition problem: for re M we want to build a machine
that scans a string and tells us whether it belongs to L[(M).
Alternatively, in lexical analysis we want to scan a string and find a
(longest) initial segment of the string that belongs to L(M).

re = nondeterministic finite automaton (NFA)
= deterministic finite automaton (DFA)
= optimization/simplification of the DFA
=> transition table + matching engine

= code for a lexical analyzer



Finite State Machines

A finite state machine (finite automaton or FA) over alphabet 2 is a
quadruple

M = (S5TiF
where

S = afinite set of states (usually represented by numbers)
T = a transition relation: TS Sx 2 xS

i = an initial statei €S

F = a set of final states: FC S

Graphical representations:

me S: @ {m,a,n) €T: @A@
ieS: ﬂ® feF:



Deterministic and Nondeterministic FA

A finite automata M = (S, T,i,F) is deterministic (a DFA\) if for
each m € S and a € 2 there is at most one n € S such that
{m,a,n) €T

Graphically, in a DFA we don’t have any situations of the form:
a2
%

©

If a FA is not deterministic, it is a nondeterministic FA (an NFA).
Nondeterministic automata are also formed by introducing
€ transitions -- silent transitions that can be taken without

consuming an input symbol. c

@@



DFAs for Token Classes

if (IF)

O i @ f@

[a-z][a-20-9]%* (ID(str))

[0-9]T  (NUM(str))



DFAs for Token Classes

([0-91F7.7[0-91*)|([0-9]1*"."[0-9]7) (REAL(str))

("-=-"[a-2z]1*"\n") (continue()) -- comment



DFAs for Token Classes

(" " | "\t" | "\n" )+ (continue( ) ) - Whlte SPGCe

WS
m
—(1) O Dws

Where WS ’s (" " | "\t" | "\nn)

(error();continue()) -- error

any but \n l



Combined DFA

OOy

a_e r g_z

wSs
other

@ errot comment
ws

error a-2z




R.E.to NFA

a €

a AO € AO
M|N A@O



RE to NFA Example

b*(abb™)*(al€)




NFA to DFA

€ € e
<14€ O—

—()
N
=
m
m




NFA to DFA

€ € e
<14€ O—

o

—()
N
=
m
m




—()
N
m m
(o)}
(D=
m

NFA to DFA

€ e €

e-closure of 1



NFA to DFA

€

(— —()——
x| 2z |y

b




NFA to DFA

€

(— —()——
x| 2z |y

o6&

e-closure of 5



NFA to DFA

joe

e-closure of 6

€



NFA to DFA




NFA to DFA




foo.lex

lexer specification

ML-Lex

ML-Lex

> foo.lex.sml

sml code for lexer

Specification for token values has to be supplied externally, usually
in the form of a Tokens module that defines a token type and a set
of functions for building tokens of various classes.



An ML-Lex specification

ML Declarations:
type lexresult
fun eof ()

3

Tokens.

3

Lex definitions:
digits=[0-9]+;

Regular Expressions and Actions:
if

[a-z][a-20-9]*

{digits}

({digits}"."[0-91%)|([0O-

("-="[a-2]*"\n")

(" "I"M\n" A

token

Tokens .EOF(0,0)

=> (Tokens.IF(yypos,yypos+2));

=> (Tokens.ID(yytext,yypos,yypostsize yytext));

=> (Tokens.NUM(Int.fromString yytext,yypos,
yypos+size yytext));

91*"."{digits})

=> (Tokens.REAL(Real.fromString yytext,yypos,
yypos+size yytext));

=> (continue());

=> (continue());

=> (ErrorMsg.error yypos "illegal character";

continue());



Variables Defined by ML-Lex

ML-Lex defines several variables:

lex ()
continue()

yytext

YYPOS

yylineno

recursively call the lexer
same, but with %arg

the string matched by the current r.e.

character position at start of current
r.e. match

line number at start of match
(if command %count given)



Defining Tokens

(* ML Declaration of a Tokens module (called a structure in ML): *

structure Tokens =
struct

type pos = int
datatype token

= EOF of pos * pos
IF of pos * pos
ID of string * pos * pos
NUM of int * pos * pos
REAL of real * pos * pos

end (* structure Tokens *)



Start States

Several different lexing automata can be set up using start states.
Additional start states are commonly used for handling comments

and strings.

ML decls...

o O
3%

Lex decls...
%s COMMENT
<INITIAI>if => (Tokens.IF(yypos,yypos+2));

<INITIAL>[a-z]+ => (Tokens.ID(yytext,yypos,
yypos+tsize yytext));

<INITIAL>"(*" => (YYBEGIN COMMENT; continue());
<COMMENT>"*)" => (YYBEGIN INITIAL; continue());

<COMMENT>. => (continue());



