
Lecture 12

Review and
Preview

• Advanced Language features

• Object-Oriented Languages

• objects, classes

• Functional Languages

• function closures

• lazy evaluation

• advanced type systems

• parametric polymorphism (ML, Haskell)

• subtyping (O-O languages)

• modules

• continuations, coroutines, threads

Further Topics in Compilers

• data flow and control flow analysis

• constant folding

• inlining functions

• loop optimization

• hoisting code out of loops, loop unrolling

• instruction selection

• instruction scheduling

• array bounds checks

• delay slots, speculative execution

• instruction level parallelism (ILP), pipelining, function
units

Further Topics in Compilers

• Static Single-Assignment form

• IR as functional language

• Continuation-Passing Style (CPS)

• A-normal form

• making important structure explicit

• Typed intermediate languages

• FLINT, TILT, TAL, ...

• Virtual machine systems (JVM, MSIL)

• JIT compilers

Intermediate Languages

• Memory management

• garbage collectors

• mark-sweep (classical)

• copying, generational, incremental, compacting

• Traps and interrupts

• Input/Output

• OS services

• Threads

Runtime Systems

• Lexical Analysis

• turning characters into tokens

• regular expressions

• NFAs and DFAs

• lex (ml-lex)

• r.e. patterns, actions

• start states

• handling strings with escapes

• handling nested comments

Review

• Context-free grammars

• Top-down parsers

• recursive descent

• Bottom-up parsers

• LR grammars (LR(k), SLR, LALR(k))

• constructing parser tables

• Yacc (ml-yacc)

• terminals and nonterminals

• grammar rules and actions

• shift-reduce and reduce-reduce conflicts

• precedence and associativity declarations

Parsing

• Simple tree representation of logical structure

• types

• expressions

• statements

• declarations

• Naturally expressed using ML datatypes

• Basis for semantic (or static) analysis

Abstract Syntax

• Types

• express structure of data

• interface of functions

• Type Environments

• map names (variables, functions) to their types

• Typing rules

• relate expressions and types

• Type checking

• check consistency

• synthesize types of expressions

Type Checking

• Type checking

• Determining scope of names (types, variables,
functions)

• Escape analysis

• global vs local variables

• Forward references

• recursive types

• recursive functions

• two pass analysis (prebind names, then analyze definitions)

Semantic Analysis

• Intermediate language or IR (tree.sig/sml)

• a lower-level tree representation of program structure

• constructs similar to machine language

• unlimited supply of temps, or abstract registers

• temps and labels replace variables and functions

• conditional and unconditional jumps express control flow
constructs (if-then-else, while, for, break)

• type lexp expresses memory accesses (l-values, r-values)

• MOVE represents assignment, indexing, selection

Intermediate Representation

• translation environments

• maps names (variables and functions) to access info

• separate expressions and statements

• gexp reunifies expressions, statements, and conditionals

• coercions between different forms to satisfy context

• recursive traversal of abstract syntax (similar to type
checking, escape analysis)

• two pass treatment of recursive function declarations

• types not involved

• units of translation are “fragments”

• representing single function body (or top-level program)

Translation of Absyn to IR

• Call Frames (aka Activation Records)

• store local information associated with a function call

• arguments and local variables that “escape”

• saved $fp and $ra registers

• space for spilled temps and callee saves registers

• space for excess outgoing arguments (beyond first 4)

• frame record

• records information about function and its frame layout during
compilation

• manages allocation of slots for arguments, locals, spills

• could store info on use of global variables and need for static
link

Function Call Frames

• Need to compute access to nonlocal variables

• static link is frame pointer of frame of statically
enclosing function

• passed to function as additional, implicit parameter

• not always needed

• first argument, treated as escaping (found in 0($fp))

• computed with the aid of “level” type

• chain of statically nested functions

• translation environment maps function to its parent’s level

Static Links

• Linearize code

• move statements (including calls) out of expressions

• no side effects in expressions

• flatten to statement list (possibly followed by final expression)

• eliminates SEQ and ESEQ IR tree forms

• Split into basic blocks

• straight-line code segments

• start with label, end with (conditional or unconditional) jump

• can be reordered without changing behavior

• Trace scheduling

• sort basic blocks and concatenate them

• arrange so jumps are followed by target labels when possible

• arrange for false branch of cond. jump to follow jump

Basic Blocks & Trace Scheduling

• live range

• a temp is live over a sequence of instructions between a
definition and a use of that temp

• liveness analysis determines the live ranges of temps

• calculates live-in and live-out sets of temps at each instruction

• two temps interfere if they are both live at the same
point

• they then have to coexist, and therefore can’t occupy the same
register

• t1 and t2 interfere if t1 is defined at an instr and the other is
live-out at that instr

• interference graph records interference relation

• nodes represent temps, edges represent interference

Liveness Analysis

• Assign registers (strings) to temps (allocation)

• Avoid assigning same register to temps that interfere

• color the interference graph using registers as colors

• successively remove nodes of insignificant degree (simplify)

• color them as they are restored

• pick colors to maximize number of moves between temps of
same color (these moves can then be eliminated)

• If no nodes of insignificant degree

• choose a node of minimal spill cost to spill (store in frame)

• rewrite code to accomplish spilling

• redo liveness analysis and interference graph coloring

• Register coallescing

• attempt ot coallesc nodes that are move related, if it doesn’t
make coloring harder

Register Allocation

• Open book, open notes, open code

• Wednesday, June 11, 10:30am-12:30pm

Final Exam

