Review and
Preview

Lecture 12

Further Topics in Compilers

e Advanced Language features

e (Object-Oriented Languages
e oObjects, classes

e Functional Languages
e function closures
e |azy evaluation

e advanced type systems
e parametric polymorphism (ML, Haskell)
e subtyping (O-O languages)

e modules

e continuations, coroutines, threads

Further Topics in Compilers

data flow and control flow analysis
constant folding

inlining functions

loop optimization

e hoisting code out of loops, loop unrolling
instruction selection

instruction scheduling

array bounds checks

delay slots, speculative execution

instruction level parallelism (ILP), pipelining, function
units

Intermediate Languages

Static Single-Assignment form

e |R as functional language
Continuation-Passing Style (CPS)
e A-normal form

¢ making important structure explicit

Typed intermediate languages

e FLINT, TILT, TAL, ...

Virtual machine systems (JVM, MSIL)

e JIT compilers

Runtime Systems

Memory management

e garbage collectors
e mark-sweep (classical)

e copying, generational, incremental, compacting
Traps and interrupts
Input/Output
OS services

Threads

Review

o [exical Analysis

e turning characters into tokens
e regular expressions
e NFAs and DFAs
e |ex (ml-lex)
e r.e. patterns, actions
o start states
e handling strings with escapes

e handling nested comments

Parsing

Context-free grammars

Top-down parsers

e recursive descent

Bottom-up parsers

e LR grammars (LR(k), SLR, LALR(k))

e constructing parser tables

Yacc (ml-yacc)

e terminals and nonterminals

e grammar rules and actions

e shift-reduce and reduce-reduce conflicts

e precedence and associativity declarations

Abstract Syntax

o Simple tree representation of logical structure
e types
e expressions
e statements
e declarations

e Naturally expressed using ML datatypes

e Basis for semantic (or static) analysis

Type Checking

Types

e express structure of data

e interface of functions

Type Environments

e map names (variables, functions) to their types
Typing rules

e relate expressions and types

Type checking

e check consistency

e synthesize types of expressions

Semantic Analysis

Type checking

Determining scope of names (types, variables,
functions)

Escape analysis

e global vs local variables
Forward references

e recursive types

e recursive functions

e two pass analysis (prebind names, then analyze definitions)

Intermediate Representation

Intermediate language or IR (tree.sig/sml)

e a lower-level tree representation of program structure
e constructs similar to machine language

e unlimited supply of temps, or abstract registers

e temps and labels replace variables and functions

e conditional and unconditional jumps express control flow
constructs (if-then-else, while, for, break)

e type lexp expresses memory accesses (l-values, r-values)

e MOVE represents assignment, indexing, selection

Translation of Absyn to IR

translation environments

e maps nhames (variables and functions) to access info
separate expressions and statements

e gexp reunifies expressions, statements, and conditionals

e coercions between different forms to satisfy context

recursive traversal of abstract syntax (similar to type
checking, escape analysis)

e two pass treatment of recursive function declarations
e types not involved
units of translation are “fragments”

e representing single function body (or top-level program)

Function Call Frames

o Call Frames (aka Activation Records)

e store local information associated with a function call

e arguments and local variables that “escape”

saved $fp and $ra registers

space for spilled temps and callee saves registers
e space for excess outgoing arguments (beyond first 4)
e frame record

e records information about function and its frame layout during
compilation

e manages allocation of slots for arguments, locals, spills

e could store info on use of global variables and need for static
link

Static Links

Need to compute access to nonlocal variables

static link is frame pointer of frame of statically
enclosing function

passed to function as additional, implicit parameter
e not always needed

o first argument, treated as escaping (found in 0($fp))
computed with the aid of “level” type

e chain of statically nested functions

e translation environment maps function to its parent’s level

Basic Blocks & Trace Scheduling

e [jnearize code

e move statements (including calls) out of expressions

e no side effects in expressions
e flatten to statement list (possibly followed by final expression)
e eliminates SEQ and ESEQ IR tree forms
o Split into basic blocks
e straight-line code segments
e start with label, end with (conditional or unconditional) jump

e can be reordered without changing behavior
e [race scheduling
e sort basic blocks and concatenate them

e arrange so jumps are followed by target labels when possible

e arrange for false branch of cond. jump to follow jump

Liveness Analysis

live range

e atemp is live over a sequence of instructions between a
definition and a use of that temp

liveness analysis determines the live ranges of temps

e calculates live-in and live-out sets of temps at each instruction

two temps interfere if they are both live at the same
point

e they then have to coexist, and therefore can’'t occupy the same
register

e t1 and t2 interfere if t1 is defined at an instr and the other is
live-out at that instr

interference graph records interference relation

e nodes represent temps, edges represent interference

Register Allocation

o Assign registers (strings) to temps (allocation)

e Avoid assigning same register to temps that interfere
e color the interference graph using registers as colors
e successively remove nodes of insignificant degree (simplify)
e color them as they are restored

e pick colors to maximize number of moves between temps of
same color (these moves can then be eliminated)

e If no nodes of insignificant degree
e choose a node of minimal spill cost to spill (store in frame)
e rewrite code to accomplish spilling

e redo liveness analysis and interference graph coloring

e Register coallescing

e attempt ot coallesc nodes that are move related, if it doesn’t
make coloring harder

Final Exam

e Open book, open notes, open code

o Wednesday, June 11, 10:30am-12:30pm

