
Lecture 11

Register Allocation



Coloring a Graph

three colors
three registers

adjacent nodes should
have different colors

Interference graph
(nodes are temps)



Graph Coloring

nodes of significant degree
(degree >= 3)

If we can color these, we can color the rest.



Graph Coloring

a second phase of removing nodes 
of low degree (insignificant nodes)



Graph Coloring

remaining nodes all insignificant 
and can therefore be colored



Graph Coloring

add 2nd phase insignificants and 
color them



Graph Coloring

add 1st phase insignificants and 
color them



Need for Spills

No insignificant nodes after first phase!  



Spill Candiate

Choose this node as a
candidate for spilling and
remove it.



Spill Candidate Becomes Spill

After coloring remainder, try to color spill 
candidate.  If not possible, then spill it to
memory.



Spilling

If we need to spill temp t :

1. rewrite the code to incorporate the spilling of t:

i. at each node defining t, replace t with a new temp t’

and follow that node with a store: n($fp) := t’ (where n
is a new frame slot allocated using allocLocal)

ii. at each node using t, replace t with a new temp t’’
and precede that node with a load: t’’  := n($fp)

Note that t’ and t’’ will be live-out for only one instruction.

2. redo liveness analysis, construction of interference graph,
and coloring using the rewritten code



Spilling Situation

4 temps
3 registers

b c

d

Interference

a

b c d

Lifetimes

a



Effect of Spilling

a2 b c d

b c

d

Interference

Lifetimes

a1

a1a2



Coloring After Spilling

a2 b c d

b c

d

Interference

Lifetimes

a1

a1a2



Spill with Multiple Uses

b c

d

Interference

a

b c d

Lifetimes

a



Spill and Rewrite

b c d

Lifetimes

a3a1 a2

b c

d

Interference

a3 a2 a3



Which Temp to Spill?

• Spill the least used temp

• statically least used (fewest occurrences in the code)

• dynamically least used (weight occurrences in loops higher)

• this minimizes runtime cost of spills (number of loads and 
stores) 

• Spill the temp with the most interferences (largest 
number of adjacent nodes in interference graph)

• this removes the most edges, decreasing likelihood of further 
spills

• Spill a temp that hasn’t been spilled before (?)

• but rewriting replaces spilled temps with new ones!?

4



Coallescing Moves

b

gh

j
k

m

cd

e

f move-related

live-in: k j
g := mem[j+12]
h := k - 1
f := g * h
e := mem[j+8]
m := mem[j+16]
b := mem[f]
c := e + 8
d := c
k := m + 4
j := b

live-out: d k j

Assume 4 registers
(i.e. 4 colors)



Simplification

b

gh

j
k

m

cd

e

f

Removal of insignificant nodes



Coalescing Moves

b
j

m

c&d

e

f

b&j m

c&d

e

f

coalescing c and d

coalescing b and j



Further Simplification

b&j m

c&d

e

f

b&j m

c&d

e

f


