CS226/326

Comepilers for Computer
Languages

David MacQueen
Department of Computer Science
Spring 2003

Why Study Compilers?

To learn to write compilers and interpreters for various
pbrogramming languages and domain specific languages

E.g. Java, Javascript, C, C++, C#, Modula-3, Scheme, ML, Tcl, SQL, MatLab,
Mathematica,Shell, Perl, Python,HTML, XML, TeX,PostScript

To enhance understanding of programming languages
To understand how programs work at the machine level
To learn useful system-building tools like Lex and Yacc
To learn interesting compiler theory and algorithms

To experience building a significant system in a modern
programming language (SML)

Compilers are Translators

L, > Translator » L,
L, Translator L,
C, ML, Java, ... compiler assembly/machine code
assembly language assembler machine code
object code (.o files) link loader executable code

macrosttext

macro processor (cpp)

text

troff/TeX

document formatter

PostScript/PDF

Compilers and Interpreters

Given a program P (source code) written in language L

e A compiler is simply a translator; compiling P produces the
corresponding machine code (PowerPC, Sparc), also known as the
object code.

e An interpreter is a virtual machine (i.e. a program) for directly
executing P (or some machine representtion of P).

e A virtual machine-based compiler is a hybrid involving
translation P into a virtual machine code M and an virtual machine
interpreter that executes M (e.g. the Java Virtual Machine).Virtual
machine code is sometimes called byte code.

We will focus on the following:

e How to characterize the source language L and the target language.

e How to translate from one to the other.

Compilation Phases

source code

|

lexical analysis (lexer)

!

intermediate code

!

|

token sequence

!

code optimization

syntax analysis (parser)

!

abstract syntax

|

v
(better) intermediate code

Y

machine code generator

semantic and type analysis

typed abstract syntax

!

!

machine code

|

inst. sched. & reg. alloc.

intermediate code generator

|

(better) machine code

Programming Assignments

source code

|

(1) lexer (using ml-lex)

!

intermediate code

!

|

token sequence

!

code optimization

(2,3) parser (using ml-yacc)

!

abstract syntax

|

v
(better) intermediate code

Y

(6) machine code generator

(4) type checker

typed abstract syntax

!

!

machine code

|

(7) register allocation

(5) IR generator

|

(better) machine code

A Tiger Program

/* A program to solve the 8-queens problem */

let
var N := 8

type intArray = array of int

var row := intArray [N] of 0

var col := intArray [N] of 0

var diagl := intArray [N+N-1] of 0
var diag2 := intArray [N+N-1] of 0

function printboard() =
(for 1 := 0 to N-1
do (for j := 0 to N-1
do print(if col[i]=] then " 0" else " .");
print("\n"));
print("\n"))

function try(c:int) =

if c=N
then printboard()
else for r := 0 to N-1

do if row[r]=0 & diagl[r+c]=0 & diag2[r+7-c]=0
then (row[r]:=1; diagl[r+c]:=1; diag2[r+7-c]:=1;
col[c]:=r; try(c+l);
row[r]:=0; diagl[r+c]:=0; diag2[r+7-c]:=0)

in try(0)
end

Why Standard ML!?

A language particularly suited to compiler implementation.

e Efficiency

o Safety

e Simplicity

e Higher-order functions

e Static type checking with type inference
e Polymorphism

e Algebraic types and pattern matching

¢ Modularity

e Garbage collection

e Exception handling

e Libraries and tools

Using the SML/N] Compiler

* Type “sml”to run the SML/NJ compiler

Normally installed in /usr/local/bin, which should be in your PATH.
® Cntl-d exits the compiler,Cntl-c interrupts execution.

e Three ways to run ML programs:

|. type in code in the interactive read-eval-print loop

2. edit ML code in a file, say foo.sml, then type command
use “foo.sml”;

3. use Compilation Manager (CM):

CM.make *“sources.cm”;

e Template code in dir / st age/ cl asses/ current/22600- 1/ code

ML Tutorial |

Expressions

e Integers: 3, 54, ~3, ~54

e Reals: 3.0, 3.14159, ~3.2E2

e Overloaded arithmetic operators: +, -, *, /, <, <=
e Booleans: true, false, not, orelse, andalso
e Strings: "abc”, “hello world\n”, x"”.sml”

e [ists: 11, [1,2,3], ["x","str”], l::2::nil

e Tuples: (), (1,true), (3,"abc”,true)

e Records: {a=1,b=true}, {name="fred”,age=21}

e conditionals, function applications, let expressions, functions

ML Tutorial 2

Declarations: binding a name to a value

value bindings val x = 3
val y = x + 1

function bindings fun fact n
if n =
else n

then 1
fact(n-1)

* © |l

Let expressions: local definitions

let decl in expr end

let val x = 3
fun £ y = (y, x*y)
in f(4+x)
end

ML Tutorial 3

Function expressions

The expression “fn var => exp’” denotes a function with
formal parameter var and body exp.

val inc = fn x => x + 1

is equivalent to

fun inc x =x + 1

ML Tutorial 4

Compound values

Tuples: (exp;, ... , exp,)
(3, 4.5)
val x = ("foo”, x*1.5, true)

val first = #1(x)
val third = #3(x)

Records: {lab, = exp,, ... , lab_ = exp_}
val car = {make = “Ford”, year = 1910}
val mk = #make car

val yr #year car

ML Tutorial 5

Patterns

a form to decompose compound values, commonly used in
value bindings and function arguments

val pat = exp fun f(pat) = exp
variable patterns: val x = 3
= x = 3
fun f(x) = x+2

tuple and record patterns:
val pair = (3,4.0)
val (x,y) = pair
= x =3,y =4.0

val {make=mk, vyear=yr} = car
= mk = “Ford”, yr = 1910

ML Tutorial 6

Patterns

wildcard pattern: (underscore)

constant patterns: 3, *“a”

fun iszero(0) = true
| iszero() = false

constructor patterns:

val list = [1,2,3]
val fst::rest = list
= fst = 1, rest = [2,3]

ML Tutorial 7

Pattern matching

match rule: pat => exp
match: pat, => exp, | ... | pat_ => exp,

When a match is applied to a value v, we try rules from left to

right, looking for the first rule whose pattern matches v. We then
bind the variables in the pattern and evaluate the expression.

case expression: case exp of match
function expression: fn mat ch
clausal functional defn: fun £ pat

expy
f pat, = exp,

f pat, = exp,

ML Tutorial 8

Pattern matching examples (function definitions)

fun length 1 =
case 1 of
of [] => 0
| [a] => 1
| :: r => 1 + length r

fun length [] = 0

| length [a] =1

| length (_ :: r) = 1 + length r
fun even 0 = true

| even n = odd(n-1)

and odd 0 = false
| odd n = even(n-1)

ML Tutorial 9

Types
basic types: int, real, string, bool
3 : int, true : bool, *“abc” : string
function types: t, —>t,

even: int -> bool

broduct types: t, * t, , unit
(3,true): int * bool, (): unit

record types: {lab; : t; lab, st }

car: {make : string, year : int}

type operators: t list (for example)
[1,2,3] : 1int list

ML Tutorial 10

Type abbreviations
type tycon =1ty

examples:
type point = real * real

type line = point * point
type car = {make: string, year: int}

type tyvar tycon =1ty

examples:
type ‘a pair = ‘a * ‘a

type point = real pair

ML Tutorial ||

Datatypes
datatype tycon = con; of ty; | ... | con, of ty,

This is a tagged union of variant types ty, throughty . The
tags are the data constructors con, through con_.

The data constructors can be used both in expressions to
build values, and in patterns to deconstruct values and
discriminate variants.

The“of ty” can be omitted, giving a nullary constructor.

Datatypes can be recursive.

datatype intlist = Nil | Cons of int * intlist

ML Tutorial 12

Datatype example

datatype btree = LEAF
| NODE of int * btree * btree

fun depth LEAF = 0
| depth (NODE(,tl,t2)) = max(depth tl, depth t2)

fun insert(LEAF,k) = NODE(k,LEAF,LEAF)
| insert(NODE(i,tl,t2),k) =
if k > 1 then NODE(i,tl,insert(t2,k))
else if k < 1 then NODE(i,insert(tl,k),t2)
else NODE(i,tl,t2)

(* in-order traversal of btrees *)
fun inord LEAF = []
| inord(NODE(i,tl,t2)) =
inord(tl) @ (i :: inord(t2))

ML Tutorial |3

Representing programs as datatypes

type id = string

datatype binop = PLUS | MINUS | TIMES | DIV
SEQ of stm * stm

| ASSIGN of id * exp
| PRINT of exp list

datatype stm

and exp = VAR of id
| CONST of int
| BINOP of binop * exp * exp
| ESEQ of stm * exp

val prog =

SEQ(ASSIGN("a"” ,BINOP(PLUS,CONST 5,CONST 3)),
PRINT[VAR “a"])

ML Tutorial 14

Computing properties of programs: size

fun sizeS (SEQ(sl,s2)) = sizeS sl + sizeS s2
| sizeS (ASSIGN(i,e)) = 2 + sizeE e
| sizeS (PRINT es) = 1 + sizeEL es

and sizeE (BINOP(,el,e2)) = sizeE el + sizeE e2 + 2
| sizeE (ESEQ(s,e)) = sizeS s + sizeE e
| sizeE =1

and sizeEL [] = 0
| sizeEL (e::es) = sizeE e + sizeEL es

sizeS prog = 8

