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1 Oveview

CM is the compilation manager for Standard ML of New Jersey [MTH90, AM91]. It is loosely based on its precursor
SC [HLPR94b, HLPR94a] and provides functionality similar to the well-known UNix-program make [Fel79].

CM simplifies the maintenance of large software systems by subdividing them into a hierarchy of groups and libraries.
Groups and libraries—collectively called entities—consist of individual SML source files, other groups, and other li-
braries.

Unlike make, which is meant to be a general-purpose tool not aimed at a specific language, CM provides automatic
dependency analysis and a form of separate compilation known as cutoff recompilation [ATW94].

The compilation manager uses the hooks provided by SML/NJ’s open compiler [AM94] and translates SML sources to
produce binary object files called binfiles. The SML sources themselves can be the result of executing other programs,
which is accounted for by CM’s tools mechanism. Examples of such tools are the version control system RCS [Tic85],
the parser-generator ML-Yacc [TA90], and the literate programming tool noweb [Ram94].

One important use for CM is the maintenance of SML/NJ’s compiler, which is not quite the same as maintaining other
SML programs [App94]. For that reason we offer a special interface, which facilitates controlling batch compilation,
bootstrapping, and the process of retargeting the compiler to a different machine architecture.

2 Why CM?

The basic function of CM is to perform separate compilation, automatic dependency analysis, and selective recompilation
for any SML program consisting of more than one compilation unit. But when the number of compilation units is large,
it becomes increasingly important that they themselves can be grouped together and that explicit export interfaces can be
used to control namespaces. When there are many groups, then one may want to organize them into supergroups, and so
on.

Figure 1 shows the dependency graph for CML’s sources. CML [Rep91] is implemented as a regular SML/NJ program.
Without the help from a compilation manager one would have to invoke a number of use commands—one for each
source file—in order to load CML into SML/NJ. Of course, the order in which the commands are issued is important
here, because identifiers can only be referred to after they are defined. Therefore, since run-cml . sml refers to objects
defined in cml -compat . sml the former must be loaded after the latter. More precisely, the sequence of use commands
has to be in topological order with respect to the dependency graph. Normally the programmer does not have the benefit of
looking at a diagram like figure 1; the task of manually maintaining sources in topological order is tedious and error-prone.

One feasible ordering of CML’s sources is



trace-cml.sml

trace-cml-sig.sml | | cio.sml | | run-cml.sml |
| cio-sig.sml | | run-cml-sig.sml | /| cml-compat.sml | | cml-version.sml |

cml-sig.sml

| cml-base-sig.sml |

Figure 1: Dependency hierarchy of CML.Separate compilation can be used to break large programs into smaller pieces and to
compile these smaller compilation units one at a time. But in most cases we cannot compile a compilation unit in complete isolation:
The result of the compilation depends on both the source file itself and on the result of compiling other units. Heret r ace-cmi . smi
depends on cml - si g. sm, which is indicated by the presence of directed paths from the former to the latter. In fact, the graph
contains as many as five such paths, although each one of them would be enough for a dependency to exist.



app use
["cml-base-sig.sml', "cml-sig.sml", "run-cml-sig.sml",
"cio-sig.sml*”, "trace-cml-sig.sml', "trace-cml_sml",
"cio.sml™, "cml-compat.sml™, "run-cml._sml",
"cml-version.sml™, "cml-base.sml*, “cml_sml", "build.sml"];

but clearly there are many others as well. For example, cml-version.sml could be moved further to the front of this
list without harm. CM’s dependency analysis automates the task of determining a feasible ordering.

But not every source depends on every other source. In fact, we hope that in a well-structured project there are relatively
few interdependencies between source files. Therefore, it is usually possible to perform selective recompilation when
some but not all source files have been changed.

The UNIX program make uses a policy where not only the source that has been altered will be recompiled but also all of
its predecessors in the dependency graph as well. This mechanism can be overly pessimistic, because changes to one file
might not have an actual influence on subsequent compilations of dependent units. CM also recompiles a source whenever
its own time stamp changes, but in addition it compares the outcome with the result of previous compilations of the same
unit. Recompilation is terminated as soon as changes no longer propagate any further.

Suppose we modify cml-version.sml without changing its interface. CM will recompile this unit and be done,
because no further work is necessary, while make would also process three other files—cml-base.sml, cml _sml,
and build.sml.

3 Getting started

The easiest way of getting started using CM is by treating the entire program—the “system”—as one single group. A
group in its most basic form is just a collection of SML source files, which must be listed in an entity description file.

Even though there will be more on syntax and semantics of entity description files, for now it is enough to start with
two keywords: Group and is, followed by a list of source file names. For example, if we want to put main.sml,
table._sig, and table_sml into a single entity, then we must create a file sources . cm containing:

Group is
main._sml (* the application code *)
table.sig (* interface to “table” abstraction *)
table.sml (* implementation of “table” abstraction *)

As shown in this example it is possible to use SML-style comments within entity description files.

Once sources.cm has been set up we can start CM, which is usually done by running the command sml-cm. This
begins an interactive SML/NJ session and provides CM’s functionality.

The command
CM.make Q;

will now analyze the dependencies among components of the system, determine a feasible ordering of (re-)compilation
steps, and continue to carry them out as necessary. All CM commands are just SML expressions.



4 Restrictions

Without placing certain restrictions on SML source code it is a provably hard problem to perform reliable dependency
analyses. Therefore, CM can only deal with SML source code that obeys the following two additional rules:

e No symbol can be defined (at top level) in more than one source of the same entity (group or library).

e The use of open is not allowed at the top level.

It must also be noted that only occurrences of structures, signatures, functors, and functor signatures are tracked by CM’s
dependency analysis. This in itself does not impose another restriction on the admissible input language, but it bears the
danger of missing certain dependencies. Good programming style demands keeping all other definitions inside structures
and signatures—in which case there will be no problem.

The analyzer does not make any attempt to take side-effects into account. Consider the following situation:

File a.sml defines:

 file a.sml *)

structure A = struct
val r = ref O

end

Execution of b.sml modifies the ref cell:

(* file b_.sml *)
structure B = struct
val _ = A.r :=1

end

Now, if c.sml refers to A. r as well — which value should it see?

(* file c.sml *)

structure C = struct
val x = TA.r

end

Either O or 1 would be legal, and there is no way to prefer one over the other.

Care must be taken with top-level side effects, because CM does not try to address this problem. It is up to the programmer
to make sure that the ordering of side-effects is either unambiguous or does not matter. In the example above, to make
sure that b.sml is compiled and executed before c .sml, one could add an otherwise unnecessary reference to structure
B to the code in c.sml:

(* file c.sml *)
structure C = struct

local
structure B = B
in
val x = TA_r
end
end



5 Hierarchical modularity

Instead of using a single group one can divide a system into several groups and arrange them into a group hierarchy. There
are two main motivations for doing so:

1. to make large systems more manageable by grouping related source files together

2. to relax the restriction of only being allowed to have one definition for every top-level symbol

The second point deserves some elaboration: Normally—within one entity—we are forced to have at most one top-level
definition for each symbol. Without this restriction there could be ambiguities that prevent automatic dependency analysis
from succeeding.

However, the hierarchy of groups must be specified by the programmer explicitly. Therefore, there is no problem with
having the same symbol defined in different groups or libraries, because the partial ordering for them is known in advance;
CM does not have to infer it.

In SML it is not allowed for definitions to form cycles across module boundaries. In particular, structure A from
a.sml cannot refer to structure B in b_sml, if at the same time structure B refers to structure A.CM
enforces this rule even if there is a sub-entity providing definitions for either A or B. This would allow one to break the
cycle, but in general it is not possible to unambiguously decide where.

There is one exception. Constructions like
structure A = A

or variations thereof, which seem to form cycles of length one, are not considered cyclic definitions. The use of A is not
in the scope of the definition of structure A. There is no way of changing this situation by reordering source files,
because both use and definition are in the same compilation unit. Therefore, CM will treat the use of A as a reference to
some definitions imported from a sub-entity.

5.1 Groups and subgroups

A group whose description file has been mentioned in some other entity’s description becomes a subgroup of that other
entity, which is then called the client of the group. Sources of the client can refer freely to any of the symbols defined
within and exported by the subgroup. However, the client can also provide new definitions for any of the subgroup’s
symbols, thereby masking the original one.

Imported symbols are available for re-export by the client. The exact rules which govern re-export will be described later
after libraries and export filters have been introduced. So far we only deal with groups and subgroups without export filters.
In this simple but certainly common scenario all imported definitions will always be re-exported—uwith the exception of
those that have been masked. In effect, all non-masked definitions will ultimately become available at the interactive top
level.

5.2 Describing a group-hierarchy

To turn a group into a client of some other group one only needs to mention the subgroup’s description file somewhere
among the list of sources of the client. From now on we will refer to this list as the list of members. Some of the
members are sources, others are descriptions for sub-entities. Usually CM will automatically identify description files in
its member list by looking at the names: those ending in .cm are treated as names of CM-style entity description files.
Relative filenames are regarded as being relative to the directory the description file appears in.

Suppose we have a group consisting of a.sml and b . sml, which needs to refer to a subgroup containing util/c.sml
and uti l/d_sml. In this case we could create a description file uti 1/sources.cm with:



.sig .sml _fun Smi
-grm .y MLYacc [TA90]
lex (1 MLLex [AMT89]
-burg MLBurg [GG93]
,V RCS [Tic85]
-cm CMFile
.sc SCGroup
-nw Noweb

Table 1: Default mapping from name suffixes to member classes

Group is
c.sml
d.sml

and another one—called sources . cm—specifying:

Group is
a.sml
b.sml
util/sources.cm

5.3 Tools and member classes

Sometimes a member file is not a description file and also does not contain SML source code. Such a file requires a
different kind of processing before CM’s analyzer can understand them. The special processing is done by the built-in tools
facility of CM, which in many cases will invoke auxiliary programs for this purpose. For example, an ML-Yacc source file
parser.grm will first be fed to ml-yacc, which produces two files: parser.grm.sigand parser.grm.sml.
These will then be treated as SML source files.

CM tools can be combined into cascades. Instead of specifying parser . grmone can use the corresponding RCS archive
parser.grm,v instead. CM will first run the co command to check out a copy of parser .grm, then feed the result
into ML-Yacc to finally obtain parser.grm.sigand parser.grm.sml.

Normally the decision of which tool to pick is made based on the name of the source file, but in general it can also be
guided by explicit specifications in the description file: Any member name can optionally be followed by a colon and
the name of a member class. Currently CM knows about the classes SmI, CMFi le, SCGroup, SCLibrary, MLLeX,
MLYacc, MLBurg, RCS, and Noweb. Class names are case-insensitive.

Some class names are special to CM—they correspond to classes of members which do not need to be processed by tools
but which can be analyzed directly. Those classes are

Sml: plain SML sources

CMFile: CM-style entity descriptions

SCGroup: SC-style group descriptions

SCLibrary: SC-style library descriptions

Since CM tries to guess the member class based upon the member’s name it will rarely be necessary to specify class names

explicitly. Table 1 shows the list of recognized file name suffixes and their corresponding class names. (Not all supported
suffixes are shown in this table. The unlisted ones embody SC legacy and will eventually disappear.)



[ member class | processor |  source | targets | conditions ||

MLYacc ml-yacc file file.sig out-of-date
file.sml
MLLex ml-lex file file.sml | out-of-date
MLBurg ml-burg file.burg file.sml | out-of-date
file file.sml
RCS co-q file,v file target missing
RCS/file,v file
Noweb notangle file.nw file.sig out-of-date
file.sml
file file.sig
file.sml
root@file.nw root
root@file root

Table 2: Available tools

Every tool is associated with

e aprocessor
e arule for determining target file names from the name of the source file

e aset of conditions under which the processor is to be invoked

The tools interface to CM allows for the seamless addition of new tools by writing a few lines of Standard ML (see
section 9). Table 2 shows the specifications for the tools which are available by default. The out-of-date condition
mentioned in this table refers to the situation where at least one of the targets is either missing or older than the source.

5.4 Export filters

Any entity can be equipped with an export filter. The filter, which is simply a list of symbols, restricts the set of definitions
exported. Entities with export filters will export definitions for precisely the symbols listed, no matter whether they are
defined in the entity itself or in one of the sub-entities that it is a client of.

Export filters can be used to good effect in the case of libraries, where they are mandatory. But even for groups they are
often useful. Symbols used for the communication between individual sources of an entity but not meant to be visible
from outside can conveniently be hidden this way. Furthermore, export filters enable us to reduce the chance of clashes
between different definitions for the same symbol. Another reason for using export filters is to restrict the set of symbols
that will become visible at the interactive top level.

During the process of recompilation CM always combines just the minimal set of static environments sufficient to build
a suitable compilation environment for each given SML source. By specifying export filters it is possible to further
decrease the size of the compiler’s internal data structures, which is something that can also contribute to reduced memory
bandwidth and increased compilation speed.

An export filter is specified as a list of symbols. It appears between the keywords Group (or Library) and is. Since
in SML we distinguish between symbols of different name spaces we must write structure struct-sym for a structure
symbol, signature sig-sym for a signature symbol, functor fct-sym for a functor symbol, and funsig fsig-sym for
a functor signature symbol.



A group description with export filter could therefore look like this:

Group
structure Table
signature TABLE
structure Main
functor A
funsig A

is
main.sml
a/fct.sml
a/fsig.-sml
table/sources.cm
RCS/parser .grm,v

5.5 Libraries

Entities are either groups or libraries. In many ways libraries are very similar to groups: both of them have a list of
members, both of them contain SML sources and input for tools, and both of them can be clients to sub-entities. The
major difference between groups and libraries becomes apparent when we look at the terms and conditions under which
symbols are exported.

If an entity imports a symbol from a group, then the corresponding definition (besides being allowed to be masked) has
the same status as any definition coming directly from a source of the client. In particular, it will be exported to clients of
the client unless hidden by the client’s export filter.

Symbols imported from libraries can be referred to from within sources of the client, but they will not automatically
be re-exported to clients of the client. (The client may still provide new definitions, therby masking the ones that are
imported.) Since libraries never appear at the root of the entity hierarchy this implies that definitions from libraries will
not become visible at the interactive top level. (The root entity is always treated as if it were a group—regardless of
what the description says. This way the programmer can force a library to be compiled, or to be loaded into the top-level
environment.)

Of course, this behavior can be modified: even symbols from libraries are subject to re-export provided they have been
mentioned in the client’s export filter explicitly.

Here is the precise rule which governs symbol export:

An entity with export filter exports all symbols listed in the filter regardless of their origin.

A group without export filter exports all symbols defined in sources of the group and all symbols defined in subgroups
of the group unless these imported symbols have been redefined and therefore are hidden.

A library without export filter is normally not legal. However, for the purpose of backward-compatibility with SC it
is possible to use SC-style libraries which do not have export filters. In this case the library exports all symbols
defined in sources of the library and all non-masked symbols defined in subgroups of the library. (This coincides
with the rule for groups without export filter.)

If a symbol’s definition is not used by any of the clients of a library, then it cannot be accessed at all. CM will ignore the

members of libraries whose exported definitions are not accessed; they will not be loaded and they will not be linked with
the rest of the system. Therefore, they behave in a way similar to members of libraries for other languages.

5.6 Description files—the rules

A CM-style library description file looks almost exactly like a group description file. The only difference is that the initial
keyword Group is replaced with Library.



5.6.1 Aliases

CM-style description files can also provide the functionality of a symbolic link. Instead of actually listing the specification
of a group or a library a description can “point to” another description. A file containing only

Al1as name

behaves exactly like the description file identified by name. To locate the aliased description, CM applies the same rules
that are also used to find subgroups of groups. If name is a relative pathname, then CM will first try to find it in the
directory that contains the alias. Upon failure it then consults an internal search path. See section 8.8 for details.

The maximum nesting depth for aliases is limited to 32.

5.6.2 Syntax

The full syntax of description files in BNF is:

description-file — group-description | library-description | alias
group-description — Group [ export-filter ] is member-list
library-description — Library export-filter is member-list
export-filter — export-symbol { export-symbol }
export-symbol — name-space ldentifier

name-space — structure | signature | functor | funsig
member-list — member { member }

member — Pathname[: Class]

alias — Alias Pathname

Identifier, Pathname, and Class are lexical classes consisting of non-empty strings without white space, colons,
parentheses, or semicolons. Comments in the style of Standard ML (text between balanced pairs of (* and *)) or in the
style of Scheme (text extending from a semicolon to the end of the line) are permitted. They count as delimiters like white
space. The class Pathname also includes strings of characters enclosed in double-quotes (**). No character except ** has
a special meaning there; a literal ** that is to appear in a path name must be written twice.

5.6.3 Path name syntax and portability

Normally, pathnames are parsed according to CM’s own “standard” interpretation. Forward- or back-slashes (/ and \)
are used to separate directory names from names of files and subdirectories. Pathnames that start with a slash are absolute
pathnames, others are relative to the directory that contains the CM description file.

These conventions are independent of the underlying operating system and should work wherever there is a hierarchically
structured file system.

Pathnames specified using a string enclosed in double-quotes are considered native and will be interpreted according to the
underlying operating system’s conventions. Therefore, such pathnames are inherently non-portable. However, this syntax
is mainly used in situations that are not portable to begin with: explicit volume labels under MS-DOS, non-standard
characters in file names, and so on.

The recommended strategy for writing portable CM descriptions is to exclusively use relative pathnames in CM’s standard
syntax. By relying on CM’s built-in search path, libraries in central locations (which would normally require the use of
absolute pathnames) can be named using simple file names.



5.6.4 The preprocessor

When reading a description file CM applies a simple, C-like preprocessor that allows for conditional compilation. Cur-
rently there is no way to “define” symbols using preprocessor syntax; the conditionals are tested with respect to an
environment defined in CM itself. However, there are CM commands lookup, define, undef, and undefall in
structure CM . SymVal that can be used to modify that environment.

CM’s preprocessor syntax is very similar to that used by the C-preprocessor: Lines that start with # are treated specially.

line — nonpreprocline
— preproc
nonpreprocline — line not starting with #
preproc — if { line } elif-opt else-opt endif
— error
if — beginning-of-line # if expression end-of-line
elif-opt — {elif {line } }
elif — beginning-of-line # elif expression end-of-line
else-opt — [else { line } ]
else — beginning-of-line # else end-of-line
error — beginning-of-line # error text end-of-line
Example:
Group is
a.sml
b.sml
# 1T (SMLNJ_VERSION >= 109 || defined(structure SMLofNJ) )
util.sml

# elif (SMLNJ_VERSION < 108)

# error This version of SML/NJ is too old to support this software.
# else

util-workaround.sml

# endif

Expressions denote integer quantities; O is used for for false and non-zero values for true. There are four forms of atomic
expressions:

Integer literals evaluate to the corresponding integer.
A symbol evaluates to the value bound to that symbol—or to 0 if the symbol is not defined.

The expression defined(symbol) evaluates to 1 if symbol is defined, or to 0 if it is not defined.

> w0 Do

The forms: defined(signaturesigid), defined(structurestrid), defined(functor fctid), and defined(funsig
fsigid) test to see if the given ML module is defined in the base environment.

Depending on architecture, operating system, and configuration one symbol out of each of the following groups will be
predefined to 1:

Operating system

OPSYS_UNIX
OPSYS_WIN32
OPSYS_MACOS
OPSYS_0S2

10



Architecture

ARCH_SPARC
ARCH_MIPS
ARCH_ALPHA
ARCH_X86
ARCH_HPPA
ARCH_RS6000
ARCH_POWERPC

Byte order

BIG_ENDIAN
LITTLE_ENDIAN

Size of an ML value (pointer size)

SIZE_32
SIZE_64

Additionally, in version xxx.yy of the compiler SMLNJ_VERSION will be set to xxx, and SMLNJ_MINOR_VERSION
evaluates to yy.

Expressions are formed using a variety of binary operators, all of which are left-associative. Operators are listed with
increasing precedence. Those that appear on the same line have equal binding strength:

1
&&

== I=
< <= > >=
+ -

*/

Logical disjunction | | and conjunction && are short-circuiting operations. The unary operators for logical and numerical
negation are ! and —, respectively. Parentheses can be used for grouping.

6 Autoloading

With autoloading enabled the command
CM.autoload” "util.cm";

makes all definitions exported from the entity described by uti I . cm available at the SML top-level. However, it does
that without actually compiling or loading anything. CM will then monitor code entered at top level. If it finds that
a symbol exported from util .cm is being used and that the definition for that symbol has not already been supplied
earlier, then it will calculate the minimal set of sources that need to be loaded in order to provide the desired definition.

11



6.1 Controlling the autoloader

val autoloading: bool option -> bool

This function is used for enabling and disabling the autoloader. With an argument of NONE one can query the current
status without actually changing it. The function always returns the previous setting.

val autoload: unit -> unit
val autoload”: string -> unit

These two functions behave like make and make’, except they do not actually load any module. Later, when CM sees a
use of some symbol that is exported by the entity (only structures, signatures, functors, and functor signatures are tracked),
then all necessary compilation units will automatically be linked into the running system.

val autoList: unit -> string list

A call to autoList returns a list of all entities that are currently registered for autoloading. The internal registry of such
entities can be erased by invoking clearAutoList:

val clearAutoList: unit -> unit

7 Caches, missing sources, and stable entities

CM uses a variety of caches to speed up its analysis and recompilation steps. In-core caches provide fast access to
information as long as we do not terminate the CM session. The ambient file system provides a second level of caches,
which is used to remember the results of expensive operations from one session to the next.

All cache files are stored in subdirectories of a directory called CM, which itself appears in the directory where the corre-
sponding source files are located.

7.1 Binfiles

The most important kind of cache is the binfile, because it enables us to avoid compiling sources over and over. In addition,
during an ongoing session compilation results are partially kept in main memory. This greatly reduces file system traffic.

Binfiles are located in a subdirectory whose name is derived from the name of the target machine architecture and the flavor
of operating system running on that platform. Table 3 shows the architectures which are currently supported together with
their associated binfile directory names. The binfiles themselves use the suffix . bin, which is simply glued to the end of
the respective source file name.

Example: On a Sparc runnning some form of UNix the binfile for u/Za.sml is u/CM/sparc-unix/a.sml.bin.

7.2 Declfiles

Dependency analysis is also expensive, because it requires parsing source files. However, very little information taken
from each source is necessary to drive the analysis. Therefore, CM extracts this information and caches it both in main
memory and in the file system.

The files used for this purpose are called dependency files. They are stored in a subdirectory CM/DEPEND. For example,
the declfile for u/a.sml will be u/CM/DEPEND/a.sml.

Write errors on declfiles are ignored. When CM encounters an error while writing such a cache file it only keeps the
corresponding in-core information.

12



Architecture binfile directory
DEC Alpha (32 bit) CM/alpha32-o0s
Sparc CM/sparc-os
MIPS (big endian)  CM/mipseb-os
HP-PA CM/hppa-os

IBM RS6000 CM/rs6000-0s
Intel x86 CM/x86-0s
bytecode CM/bytecode-os

Table 3: Supported architectures and associated binfile directory names

7.3 Overcoming missing source files

In the presence of caches it is possible to overcome the absence of source files as long as the contents of those caches
are usable. In particular, if both the dependency file and the binfile are present, then CM might not need to consult the
corresponding source file at all.

However, there are situations where the source must be consulted regardless of whether the binfile exists or not, because
the binfile also depends on the environment that was in effect when the source was compiled. This environment was the
result of compiling the source’s ancestors in the dependency graph. Changes in the compilation environment also require
the source to be recompiled.

7.4 Stable entities

A stable entity is one whose development has (tentatively) come to some conclusion. If we do not expect an entity to
change in the near future, then we may decide to stabilize it. Examples of stable entities are central libraries, which are
installed and maintained by the system administator.

After an entity has been stabilized we can be sure that binfiles will always be valid. The process of stabilization also
creates a special version of a dependency file—the stablefile—which contains a summary of what would have been stored
in per-source dependency files.

When CM encounters a stablefile it assumes the entity to be stable. It will not be necessary for any of the sources to be
present. Not even individual dependency files are necessary anymore. Only stablefile and binfiles are required.

For stable entities CM avoids most of its usual activity in the ambient file system. On computers with comparatively slow
access to the file system this can considerably improve performance. On many systems it will make no difference.

The name of the stablefile is derived from the entity’s description file name. A rule very similar to the one used for binfiles
is used. For example, on a Sparc-based UNIX system the stablefile for an entity described by u/sources.cm will be
u/CM/sparc-unix/sources.cm.stable.

8 Using the CMstructure

The main functionality of CM can be accessed through members of structure CM. Earlier we saw an example of that
when we described the CM.make () command. This section will give a complete description of items in structure
CM.

8.1 The root description file

Most actions of CM are driven by the result of some dependency analysis. In order to perform such an analysis it is
necessary to know the root entity of the hierarchy to be analyzed. The explicit argument used by many functions for
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naming the root description file is a string. Normally it will be considered a CM-style description file except if it ends in
-Sc, in which case it will be treated as an SC-style description.

Most of the time we can rely on built-in defaults. All functions in the CM structure that take an explicit root description
as one of their arguments have a counterpart without such a parameter. The counterpart implicitly uses an internal default
parameter of the form

I'rootfile
The rootfi le reference cell is not directly accessible, but its value can be set via
val set_root: string -> unit

Normally rootfi le contains "'sources.cm', unless the operating system environment variable CM_ROOT is set, in
which case its value will be used. Note, that ' rootFi le is always treated as a CM-style description file—regardless of
its name.

The names of all functions taking explicit string arguments end with an apostrophe. Names of the corresponding set of
functions, which make use of the default, are almost the same—they just omit the trailing apostrophe. Example:
CM.make Q;

is roughly equivalent to

CM.make” ('rootfile);

We will always discuss both versions of these functions together in order to avoid unnecessary repetition.

8.2 Compilation

val make”: string -> unit
val make: unit -> unit

val recompile”: string -> unit
val recompile: unit -> unit

CM.recompi le() analyzes the system and performs all necessary recompilation steps. A recompilation step is neces-
sary, if one of the following is true:

e the binfile is missing
o the binfile is older than its source file

o a file that this source depends on has been recompiled and CM has discovered that the new version of the ancestor
is not compatible with the existing binfile

The last point is important: Unlike make in UNIX, CM is often able to avoid recompiling certain units even if their
ancestors had been recompiled.

If the result of the ancestor’s compilation is still compatible with the existing binfile, then no further action is necessary.
In particular, just touching a file does not cause a recompilation of the entire system. Also, if a change to a source file
does not change the interface (the static environment) exported by the compilation unit, then it will not trigger subsequent
recompilations of dependent files. Such a behavior is sometimes referred to as cutoff recompilation.

CM.recompi le() does not execute the code of any of the units and does not introduce any new bindings to the inter-
active top level. Furthermore, it does not keep compiled code in main memory to avoid wasting resources.

CM.make () performs the same analysis and recompilation steps which would have been performed by CM. recompile().
In addition to that it executes the code in all units (i.e., not only the ones which needed to be recompiled). If everything
went without error, then it will also augment the interactive top level with new bindings for the symbols exported by the
system.
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8.2.1 Compilation errors

Obviously, when faced with an error during one of the compile steps, CM cannot proceed with compiling other files that
depend on the one with the error. However, this does not affect unrelated branches of the dependency graph. Therefore,
CM can “keep going”, which is reminiscent of the behavior of make in UNIx when it is called with the —k command line
flag.

Calling
val keep _going: bool option -> bool

with an argument of SOME true will enable this feature.

Since CM needs to run tools and parse source files before it can even start to build the dependency graph it cannot keep
going after errors during any of those operations. Until the set of dependencies is available, it is impossible to decide
which branches of the graph will not be affected by an error.

8.3 Linearization

Export filters and CM’s special rules for exporting symbols from libraries add something new to programming in SML.: It
is possible to construct systems that can be compiled using CM, but which have no legal ordering of use-commands for
the individual source files that would build a semantically equivalent program. Example:

Suppose we have two source filess—¥F1._.sml and 2 . sml—each of which defines two structures A and B. In g.sml we
want to access the A which was defined in ¥1.sml and at the same time the B from £2_sml. But no matter how we
order ¥1.sml and F2.sml—the definitions in the second will always mask both definitions in the first. Under CM we
can put ¥1.sml and £2.sml into different subgroups and use export filters to avoid the unwanted masking.

Nevertheless, in many cases things are not that convoluted and one can use a topologically sorted list of source files for
this purpose.

val names’: string -> string list
val names: unit -> string list

val binfiles’: string -> string list
val binfiles: unit -> string list

val strings’: string -> string list
val strings: unit -> string list

Each function—CM.names, CM.binFfiles, and CM.strings—returns a list of strings that is topologically sorted
according to the same principle. CM.names produces lists of SML source file names, CM_.binfiles returns lists of
binfile names, and calls to CM_strings yield lists of descriptions for SML sources. These descriptions are often just
the file name—except when the SML source is the result of running some tool, in which case this fact will be mentioned
in the description. (The string argument to names”, binfiles”, and strings” is the name of the description file.)

Let S(s) be the SML source associated with string s. The lists returned by any of the three functions described above
share the property that if s and ¢ are distinct members of the list and s appears before (to the left of) ¢, then S(s) does not
depend (either directly or indirectly) on S(¢). This is what we mean when we say the lists are in topological order.

CM._mkusefi le allows one to create a file with a topologically sorted list of use commands. The second or sole string
argument is the name of the file to be written.

val mkusefile’: string * string -> unit
val mkusefile: string -> unit
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This can be useful for maintaining stand-alone versions of a system, but the technique of sequentially reading and com-
piling a collection of SML source files is inherently less expressive in its management of name spaces than what can be
done with CM’s groups, libraries, and export filters.

Therefore, a much better alternative to CM.mkusefile is CM.sa (sa = Stand Alone). This function also produces a
small program expressed in SML source language that can subsequently be read and compiled by SML/NJ.

val sa’: string * string -> unit
val sa: string -> unit

However, unlike the program written by mkuseFi I e, the one generated using CM . sa uses special support that was built
into SML/NJ and reproduces precisely the same treatment of namespaces that CM itself would use internally when running
CM_make. Furthermore, before compiling a source file the program will attempt to load the corresponding binfile. This
can be a useful aid when building systems that no longer depend on the presence of CM. (CM itself can be bootstrapped
using this facility.)

8.4 Visualization

Sometimes it is helpful to be able to look at a graphical representation of the dependency graph. CM’s dependency graphs
are directed and acyclic. The function CM.dot can be used to produce input for the DOT program [KN93], which is
a tool for automatically drawing such graphs. Figure 2 shows a DOT drawing of the dependency graph for the CML
library [Rep91].

val dot’: string * string -> unit
val dot: string -> unit

An invocation of this function writes a DOT-specification into the file that was hamed by the second (or sole) argument.
DOT-specifications contain ordinary text. Layout parameters are located near the top of the file. Any text editor can be
used to adjust them when necessary.

DOT was developed at AT&T Bell Laboratories. Universities can obtain it in binary format free of charge after signing a
license agreement. For further information contact north@research.att.com.

The pictures produced use ellipses for . sig-files, rectangular boxes for .sml-files, and diamond-shaped boxes for all
others. Lines between nodes denote direct dependencies. Lines are solid when the two nodes belong to the same entity.
Dashed lines are used for edges which cross between different entities. A dotted line connects a node to the name of a
symbol imported from the base system. These symbols are displayed as plain text labels.

8.5 Stabilization

Running CM_.stabilize false stabilizes the root entity of the system. In the process of stabilization CM runs the
equivalent of CM_recompi le() in order to update all of the binfiles. After succeeding it continues by creating a
stablefile. If the entity to be stabilized refers to other entities, then those sub-entities should already be stable. The process
of stabilization can be made recursive by passing true to CM.stabi lize. This way not only the root entity but also
all of its descendents will be stabilized.

val stabilize’: string * bool -> unit
val stabilize: bool -> unit

In order to de-stabilize a stable entity one can invoke the CM.destabi I ize command.

val destabilize’: string -> unit
val destabilize: unit -> unit
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Figure 2: DOT drawing of a dependency graph

17



8.6 Preprocessor symbols

The top-level structure CM contains a substructure SymVal with the following functions:

val lookup: string -> int option
val define: string * int -> unit
val undef: string -> unit
val undefall: unit -> unit

Definitions for specific symbols can be added using define and removed using undef. An invocation of undefall
clears all definitions. The lookup function provides a way of determining the current value associated with a given
symbol.

8.7 Autoloader

Here is a summary of the functions used to control the autoloader. See section 6.1 for details.

val autoloading: bool option -> bool

val autoload: unit -> unit
val autoload’: string -> unit

val autoList: unit -> string list
val clearAutoList: unit -> unit

8.8 Miscellaneous

CM maintains some internal state which is used to control its global behavior. Part of this state is a set of boolean flags
which can be manipulated by calling interface functions of type bool option -> bool. All of them always return
the previous setting. An argument of SOME x is used to set the value to x, NONE only queries the current state without
modifying it.

val keep_going: bool option -> bool (* CM_KEEP_GOING *)
val verbose: bool option -> bool (* CM_VERBOSE *)
val show_exports: bool option -> bool (* CM_SHOW_EXPORTS *)
val parse_caching: int option -> int

The comments show the names of UNIX environment variables, which can be used to set the initial values. The values are
controlled by setting the corresponding environment variable to either true or false.

CM.keep_going has been described before. The verbose flag (initially true) can be used to silence CM’s chatting
about its current activities by setting it to false.

CM.show_exports, when set to true, will cause CM to report the set of symbols exported by filterless entities. This
feature is particularly useful when trying to convert SC-style libraries to CM.

CM.parse_caching limits the number of parse trees CM keeps in main memory. Parse trees that are kept after
dependency analysis might save time by avoiding reparsing the file during compilation. However, with large programs
this can become rather unwieldy. CM. parse_caching offers a way to tune CM’s behavior here.

val set_path: string list option -> string list (* CM_PATH *)
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Normally CM interprets relative pathnames in descriptions as being relative to the directory the description file appears
in. The path—an internally kept string list—specifies a set of alternative directories, which CM must consider in the case
that a named subentity cannot be found locally. An initial path is taken from the UNIX environment variable CM_PATH
unless this is not present, in which case a built-in default will be used. CM_PATH must specify a list of directories. Under
Unix the format is a colon-separated list of pathnames in the style of /bin/sh’s PATH variable, while on other systems
CM uses the semicolon in place of the colon as its separator.

One can change the path interactively by invoking CM_set_path. This function also returns the old setting. Passing
NONE as an argument can be used to query the current setting.

val sweep: unit -> unit
val clear: unit -> unit

CM.sweep() and CM.clear () are used to explicitely manipulate CM’s in-core caches.

CM.sweep () removes all internally cached binfiles that are no longer consistent with the external (file-system) cache
or the respective sources. For correctness this will never be necessary, because CM always performs consistency checks
before using a cached item. However, it can help to reduce memory usage.

CM.clear () empties all in-memory caches.

9 Adding new toolsto CM

Structure CM.Tools: CMTOOLS is a repository of types and functions that are necessary when one wishes to add new
tools to CM. It is not necessary to recompile CM when augmenting it this way.

This interface for customizing CM is not as convenient as writing scripts for make. Instead it was designed to be very
general, because the full power of SML can be used. For the most common situations there are useful pre-defined building
blocks available in CM. Tool s.

9.1 Basics

Tools are associated with “tool classes”. Source files are classified according to what tool is needed to process them.

CM’s knowledge about a tool class consists of:

1. A name for the class. This is a simple string consisting of lower-case letters.

2. Arule: The rule is a function from a member name (a string) to a “target” list, where each target is another member
name together with an optional tool class. Most of the time member names refer to files, but this is not always the
case, as can be seen in the case of the root@file.nw notation for the noweb tool.

3. Avalidator: The validator takes a source file name and the target list as produced by the rule and determines whether
or not the tool needs to be invoked at all.

4. A processor: The processor implements the actual tool, i.e., it takes source file name and targets and runs the tool.

type fname = string
type class = string
type target = fname * class option

Member names passed to rules, validators, and processors are exactly the ones that appear in the entity description file.
Relative names are resolved relative to the directory the description file appears in. We call this directory the “context”.
When running a validator or a processor CM temporarily changes its working directory to the context to allow for relative
filenames to be processed correctly.
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type validator = { source: fname, targets: target list } -> bool
type processor = { source: fname, targets: target list } -> unit

Ideally, rules should also run with the working directory changed to the corresponding context. However, changing the
working directory can be relatively expensive and is often not necessary for a rule to work correctly. To account for that
CM offers a somewhat involved interface for its rules, so it is up to the programmer to decide whether or not the context
should be set or not.

type rulefn = unit -> target list
type rulecontext = rulefn -> target list
type rule = fname * rulecontext -> target list

Generic rules take the name of the source and also a rule context as an argument. It may subsequently pass a parameterless
procedure (the “rule function”) to the rule context. The function is then invoked with the working directory set properly.
Rules that do not care about the context can ignore their second argument. Most of the time this will be the case when the
target file names can be derived directly from the source name itself. In more complicated situations it may be that the
rule needs to open the file and inspect its contents.

The most common rules (“simple rules”) will either always ignore the context or always use it. This is captured by the
type simplerule. Conversion routines dontcare and withcontext convert simple rules to generic ones.

type simplerule = fname -> target list

val dontcare: simplerule -> rule
val withcontext: simplerule -> rule

Tools classes are registered with CM using the function addToolClass:

val addToolClass:
{ class: class, rule: rule,
validator: validator, processor: processor } -> unit

9.2 Tool classes and classification

The tool class can be determined in three different ways:

1. If the source name is a member in a CM description file, then it can be followed by a colon and the name of the
corresponding tool class. Internally, tool classes use lower-case names, tool names in CM description files are
case-insensitive.

2. If a source is the product of running a tool on another source, then the rule for that tool may have specified the tool
class for its target.

3. If the description file omits the class specification or if a tool’s rule does not provide this information for one of its
targets, then CM tries to infer the class name automatically.

Automatic classification and classifiers
Automatic classification is done based on the name of the source. In the most common case it is the filename extension

(“suffix™) that is used to make the decision, but it is also possible to take more or all of the file’s name into account.
Classification is done by “classifiers”, which come in two flavors:
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datatype classifier =
SFX_CLASSIFIER of string -> class option
| GEN_CLASSIFIER of fname -> class option

Suffix classifier A function from suffix strings to class option. (SFX_CLASSIFIER)

General classifier A function from source names to class option. (GEN_CLASSIFIER)

Classifiers can be added using addClassifier.

val addClassifier: classifier -> unit

It is possible to invoke the built-in classification mechanism explicitly using the function defaul tClassOf:
val defaultClassOf: fname -> class option

The CM. Tool s structure also contains some functions for conveniently creating the most common classifiers, validators,
and processors:

e Make a classifier which looks for a specific file name suffix:
val stdSfxClassifier: { sfx: string, class: class } -> classifier
o Two validators—one verifies time stamp consistency, the other one only probes the existence of the targets:

val stdTStampValidator: validator
val stdExistenceValidator: validator

e Make a processor that runs a given shell command with the source name as its only argument. The tool argument
is used when raising the ToolError exception upon failure (see section 9.3).

val stdShellProcessor: { command: string, tool: string } -> processor

9.3 Tools exception
If a tool fails to complete its operation normally, then it can signal this condition by raising the exception ToolError:
exception ToolError of {msg:string, tool:string}

The fields msg and tool can contain arbitrary strings. However, tool is intended to describe the tool that raised the
exception, while msg should give more detailed indication of what exactly went wrong.

9.4 Recommended strategy for adding tools

When adding new tools to CM we recommend writing a functor that takes the CM_Tool's structure as its argument. This
way the tool can easily be installed by instantiating the functor.

Suppose one wants to extend CM with a tool for an improved version of ML-Yacc. The old ML-Yacc should still be
available, though. Let’s create a new class BetterYacc, a processor that runs the command new-ml-yacc, and have
CM recognize files whose names end in _.ngrm or .ny as input for this tool.

The rule maps input file x to output files x.sig and x.sml—both of them classified as belonging to class Sml. The
validator compares time stamps in the file system.

The following sample code is highly stylized; experienced programmes could easily “compress” it to only a few lines:
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functor YaccSourceFun (structure Tools: CMTOOLS) = struct

local
val command = "‘new-ml-yacc"

fun simplerule source = let

val smlfile = source = "_sml"

val sigfile = source = ".sig"

fun sml £ = (f, SOME "sml'™)
in

[sml sigfile, sml smilfile]
end

Tools.stdTStampVvalidator

val validator

val processor =
Tools.stdShellProcessor { command = command,
tool = "Better-ML-Yacc" }

(* install BetterYacc class *)
open Tools

val class = "betteryacc"
fun sfx s =
addClassifier (stdSfxClassifier { sfx = s, class = class })
in
val _ = addToolClass { class = class,
rule = dontcare simplerule,
validator = validator,
processor = processor }
val _ = sfx "ngrm"
val _ = sfx "ny"
end

end
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A Using CM for compiling the compiler

A.1 Introduction

For CM’s precursor SC there existed a special batch version called SCB, which was used by those who work on SML/NJ’s
compiler itself. Recompiling compiler sources is closely related to the process of bootstrapping SML/NJ [App94].

There is no separate “batch” version of CM; the functionality of batch compilation has been integrated into CM proper. It
is available through two additional top-level structures: CMB and CMR.

A.2 Batch compilation—st ruct ure CVB

The batch compiler is implemented as a structure called CMB which uses its own private copy of a full-fledged structure
CM. Its behavior has been modified in minor ways to account for the specifics of recompiling the compiler.

In order to use CMB it is necessary to run CM in the compiler’s source directory. Batch compilation is started by invoking
CMB.make():

val make: unit -> unit

A.3 Batch compilation—the internals

CMB.make’s work proceeds in several distinct phases. Most of them are closely interrelated with the details of the
interaction between SML/NJ’s compiler and its run-time system as well as with the details of the boot procedure.

A.3.1 Phases

1. Construction of the core environment by compiling some dedicated source files located in the boot directory. This
step compiles three files, the names of which are hardwired into CMB:

boot/assembly.sig defines a signature that describes the interface to the run-time system. (The run-time system is
not written in SML.)

boot/dummy.sml implements a structure that matches the run-time system’s signature. This structure is used as
a placeholder in order to allow further compile-steps to proceed. The actual code is never used, because the
boot procedure will replace it with the actual run-time system.

boot/core.sml implements the core environment. This file is the only one that directly depends on the result of
compiling boot/dummy .sml. Since the place of the latter will be taken by the run-time system we must
compile boot/core.sml in a special way to account for potential compatibility problems.

2. Compilation of the remaining sources in the boot directory in some fixed order. This order is specified in boot/all-files._cm.
The format of this file is an entity description file. However, CM does not perform dependency analysis but uses
the order in which the members are listed.

3. CM reads the description file boot/pervasives.cmand compiles the members listed there. Anything defined
here will eventually make up the so-called pervasive environment, which serves as the initial basis for compiling
the compiler sources proper. Now we have finished compiling the boot directory.

4. Analysis of dependencies among the compiler’s source files. The bulk of the compiler’s sources can directly be
understood by CM’s dependency analyzer.

5. Recompilation of the compiler’s sources as far as necessary. This step also takes advantage of CM’s basic function-
ality such as cutoff recompilation. However, there are some differences:
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architecture stem binlist

DEC Alpha (32 bit) Alpha32  BINLIST.alpha32
Sparc Sparc BINLIST.sparc
MIPS big endian MipsBig BINLIST.mipseb
HP-PA Hppa BINLIST.hppa
IBM RS6000 RS6000 BINLIST.rs6000
Intel x86 X86 BINLIST.x86
bytecode ByteCode BINLIST.bytecode!

Table 4: Target architectures, associated name stems, and list-files

o All binfiles are stored in one single directory. Its name depends on target architecture and operating system.
For example, when compiling for a DEC Alpha machine running a flavor of Unix binfiles are placed into
bin.alpha32-unix. Note that this implies there can be no duplication of file names throughout the
compiler sources (even within subdirectories and subgroups).

e The base environment for the compilation is the one constructed by compiling the boot directory.

6. Generating list files (see below).

A.3.2 List-files

In order to finally build a new SML/NJ system it is necessary to combine the various binfiles. However, this cannot be
done by CM or other SML programs. The binfiles must be loaded into an empty run-time system.

The boot mechanism of the run-time system reads certain list files. They are used to record the names of binfiles that are
needed to build a new compiler. The two most important list files—BOOTL I1ST and B INL I ST—are written by the batch
compiler in step 6. Both of them (like all the other list-files as well) are located in the binfile directory.

BOOTL IST contains the names of binfiles for the various sources in the boot directory. However, neitherassembly .sig
nor dummy . sml are mentioned.

BINLIST lists all remaining binfiles necessary to build SML/NJ on the target machine. In order to create this file CM
selects one single compilation unit as the root of the dependency graph and writes a topologically sorted list of binfiles
belonging to nodes reachable from this root. The rootfile selected must define a structure whose name depends on the
target architecture. It consists of Int concatenated with the stem that can be looked up in table 4. For example, for a
target achitecture of “MIPS big endian” the structure’s name is IntMipsBig. (Int stands for Interactive.)

In addition to BINLIST there will be another list-file—SRCL I ST—naming the sources for these binfiles. This file will
be used to find the sources in the case that static environments must be re-created from sources at boot-time instead of
simply extracting them from binfiles (xmakeml -elab option). Similarly, BOOTSRC names the sources for binfiles
listed in BOOTLIST. Note that file names in BOOTLIST and BINLIST are relative to the binfile directory, while file
names in BOOTSRC and SRCLIST are relative to the compiler’s source directory.

Finally, there will be a set of list-files—one per supported target architecture (table 4)—which specify names of binfiles
for cross compilers. Again, each of these files contains a topologically sorted list of binfiles. Their creation proceeds
completely analogous to creating BINLIST: There must be one compilation unit defining some structure whose name
depends on the cross compiler’s target architecture. This unit is selected as the root of the dependency graph used to
produce the topological ordering. To obtain the name of the structure CM concatenates the stem shown in table 4 with
VisComp. Example: The structure pertaining to cross compilers for the HP-PA architecture is HppaVisComp.

A.4 Controlling the batch compiler
A4l Files

There are three files that are used to control batch compilation. All of them have the format of a group description without
export filter.
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boot/all-files.cm The files boot/al 1-fi les.cmlists the source files in directory boot with the exception of

e boot/assembly.sig
e boot/dummy.sml
e boot/core.sml, and

Even though it has the format of a group description it will not be used as input for a dependency analysis. Instead,
the order of members in this “group” matters—they are compiled top-to-bottom.

boot/pervasives.cm After all members of boot/al 1 -Files.cmhave been compiled CM will continue to process the
members of boot/pervasives.cm. Again, the members of this file is also not subject to dependency analysis.
The environment resulting from compiling boot/pervasives.cm is remembered as the so-called pervasive
environment or initial basis.

all-files.cm File al I-Files.cm is the root description for the remaining system. It will serve as input to the depen-
dency analyzer. Therefore, the order of its members does not matter.

A.4.2 Flags

CM shares its internal state with CMB. This means that the interface functions described in section 8.8 can also be used to
control the behavior of CMB. Example:

CMB.CM.verbose (SOME false);
CMB.CM.keep_going (SOME true);

This is equivalent to

CM.verbose (SOME false);
CM.keep_going (SOME true);

A.5 Cross-compilation and retargeting

Retargeting the batch compiler corresponds to creating a new instance of CMB, the compiler of which has been replaced
with one that produces code for a different architecture. In order to be able to retarget we must already have a complete
set of working binfiles for the compiler running on the host architecture.

Structure CMR contains the retarget function, which is responsible for building a new CMB.
structure CMR: sig

val retarget: { bindir: string, cpu: string, os: string } -> unit
end

For example, if the host machine is a DEC Alpha and we want to cross-compile for a Sparc running some flavor of UNIX,
then we invoke:

CMR.retarget { bindir = "bin.alpha32", cpu = "sparc', os = "unix" };

This command reads bin.alpha32/BINLIST.sparc and loads the files listed therein. The result is a compiler that
produces code for a Sparc machine running UNIX, even though it itself still runs on the Alpha. The new compiler is used
to construct a new structure CMB which then replaces the old one.

Known CPU names are alpha32, sparc, mipseb, hppa, rs6000, x86, and bytecode. Operating system speci-
fiers are unix, macos, 0s2, and win32.

Once CMR.retarget has completed successfully it suffices to run
CMB.make ;

in order to produce Sparc binfiles for the compiler.
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B Installation and maintenance

Normally a working version of CM will be distributed as part of the SML/NJ system. SML/NJ’s installation procedure
automatically builds CM and even uses it to install other parts of the system.

The following paragraphs describe the steps necessary to be taken in the unlikely event that CM must be installed or
maintained separately.

B.1 Installation

To build the first heap image for CM you must run the bui Id script.

If everything is fine, then bui 1d will create sml-cm. arch-os, which subsequently needs to be moved to the appropriate
heap directory. Normally this will be something like . ./. ./bin/ _heap/.

bui Id accepts a number of parameters that can be used to customize CM. Defaults are given in parentheses.

-sml sml tells bui Id which command to run in order to launch SML/NJ’s base system (sml).
-yacc yacc names the command for running ML-Yacc (ml-yacc).

-lex lex declares the command for running ML-Lex (ml-l1ex).

-burg burg does the same for ML-Burg (mI-burg).

-rcs co specifies the UNIx command responsible for checking out the most recent version of a file from its RCS archive
(co -q).

-nll tells CM that filenames have a limited length. To cope with this it will avoid using the .bin-suffix for binfiles.
(Binfiles reside in dedicated directories, therefore it is not necessary for them to have a special suffix.)

-L path defines the default search path for files. The path must be given as a colon-separated list of directories. Later
this value can be overridden by calling CM_.set_path, or by starting smI-cm with the CM_PATH environment
variable set.

-0 name specifies the name of the CM image file (sml-cm.arch).

B.2 Maintenance

Once an initial version has been set up CM itself can be used to maintain its own sources. CM is an ordinary SML
program. It has been divided into three entities: the root group described in sources. cm, a group defining the interface
to the base system described in sys/sources.cm, and a library of utility functions. The library’s description file is
util/sources.cm.

After successfully recompiling the sources (by running CM_make ()) one can use the SMLoFfNJ . exportML function
in order to produce a new heap image.

After making changes to CM’s sources it is advisable to run
CM.sa "load-all";

in order to provide bui 1d with information necessary to recompile CM from scratch should this become necessary in the
future.
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C Compatibility with SC

CM’s precursor SC supported a notion of groups and libraries similar to the one used here. However, there was no way of
specifying export filters or explicit member classes.

Furthermore, the property of being a library was not given as part of the entity’s description. SC’s solution was to treat
as library description files those members whose names were preceded by a minus sign. This meant that the client had
to know whether an entity was a group or a library. There was no syntactic difference between group descriptions and
library descriptions.

In most cases it is easy to convert from SC’s description files to a format suitable for CM. In fact, in their most basic form
SC’s and CM’s descriptions look very similar to each other. To upgrade from the former to the latter simply add the line

Group is

at the top of the description file and rename it from sources.sc to sources.cm.

CM can also process SC-style description files directly. It does this by introducing the member classes SCGroup and
SCLibrary. By default, member names ending in . sc are regarded as belonging to SCGroup.

Since it is impossible to use explicit class names within SC-style description files CM will rely solely on name suffixes
and the leading minus sign to infer them. The same set of rules given in table 1 applies here.

The most serious deficiency of SC-style descriptions is that they do not provide a notation for specifying export filters.
One result of this is the undesirable ability to write libraries without export filters—something that has deliberately been
disallowed in CM.

CM’s current support for old-style SC descriptions must be regarded as a temporary solution only. It is expected to
disappear in the future.
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