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1 Introduction

For a classical mathematician, mathematics consists of the discovery of pre-
existing mathematical truth. This understanding of mathematics is cap-
tured in Paul Erdos’s notion of “God’s Book of Mathematics,” which con-
tains the best mathematical definitions, theorems, and proofs, and from
which fortunate mathematicians are occasionally permitted read a page.

Intuitionism takes the position that mathematical objects are mental
constructions. Intuitionistic epistemology centers on proof, rather than
truth. Thus, intuitionists analyze propositional combinations of mathemati-
cal statements in terms of what it takes to prove them, and a proof of ¢ A ¢
consists of a proof of ¢ together with a proof of ¢, a proof of ¢ V ¢ con-
sists of a proof of ¢ or a proof of ¢, while a proof of ¢ = 1 consists of an
algorithm that converts proofs of ¢ into proofs of 1. For an intuitionist, a
propositional formula is a tautology if it can be proven, e.g., &« = « is an
intuitionistic tautology because to convert a proof p of a into a proof of «
we simply return p.

The classical mathematician believes in the soundness of mathematical
reasoning, i.e., that everything provable is true, and therefore all intuition-
istic tautologies are also classical tautologies. The intuitionistic mathemati-
cian has no reason, however, to believe that everything that is true is prov-
able (since he does not possess in his mind a construction that enables him
to pass from an arbitrary but true mathematical statement ¢ to an intu-
itionistic proof of ¢). Indeed, it is not difficult to give propositional formulae
that are classical, but not intuitionistic, tautologies.

The standard example of a classical tautology that is not an intuitionistic
tautology is the law of the excluded middle, o V —«a. The law of the
excluded middle is true classically because o must be either true or false,



and aV -« is true in either case. For the intuitionist, this is not satisfactory,
as a proof of a V =« must consist either of a proof of a or a proof of —a,
and argument given is neither.

One problem with this example, though, is that it depends on negation.
Negation is a natural logical operator from a classical point of view, but it is
not especially natural intuitionistically, as it is not immediately clear how we
construct a negative, and as the treatment of the other logical connectives
seems to require that somehow define a proof of —« in terms of a proof of
Q.

It is therefore interesting and relevant that there are negation-free propo-
sitional formulae that are classical, but not intuitionistic, tautologies. The
simplest of these is Peirce’s Law: ((a = () = a) = «a.

2 Intuitionistic Proofs

The intuitionistic propositional calculus is best organized as a natural de-
duction system.

2.1 The Positive Fragment

We’ll begin by describing the natural, positive fragment of intuitionistic
propositional logic.
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In such a presentation, proofs are naturally thought of as trees, where
the leaves are instances of assumption, the internal nodes are instances of
other rules of inference, and the root is the desired theorem. Thus:

abra
Fra=a«a

is a simple, but complete, proof. Typesetting proofs even slightly more
complicated is a real trial, and therefore more complicated proofs are of-
ten presented in a linear style, like the following proof of hypothetical
syllogism, (a = 3) = [(8=7) = (a = 7))

L aa=p808=vraq assumption

2. q;a=B,0=vkFra=p3, assumption

3. a,a= B,06=vF; B, 1, 2, implication elimination
4. a,a= B,8=vkF; =7, assumption

5. ,a= B,8=vFr7, 3, 4, implication elimination
6. a=p,8=vFra=7, 5, implication introduction
T.a=pF(B=7)=(a=7), 6, deduction theorem

8. Fr(a=p)=[(f=7v) = (a=17)], 7, deduction theorem

2.2 Negation

In order to understand the intuitionistic treatment of negation, it is useful
to let L denote a contradiction, i.e., a formula of the form o A —a. We then
introduce —p as an abbreviation for ¢ = 1, which enables us to recast the
implication introduction rule as a negation introduction rule:
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Symmetry suggests that we need a negation elimination rule, too. The
formula (—aAa) = (s a classical tautology that expresses the principle that
everything follows from a contradiction!. We recast this in the equivalent
form —a = (o = (), and note that this is in fact intuitionistically valid!
After all, if we have a proof of —a, it follows that there cannot be a proof
of a. Hence the empty function translates all (none) of the proofs of « into
proofs of 3. We then recast this formula as a rule of inference:
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We can give intuitionistic proofs of standard tautologies involving nega-
tion. First, double negation introduction, o = ——a.

1. a,-a F; -, assumption
2. a,~a kg a, assumption
3. akr—a, 1, 2, negation introduction
4. Fr o= ——-a, 3, implication introduction

Double negation elimination, ——a = «, is a classic tautology, but
it is not an intuitionistic tautology. Surprisingly, though, the special case of
triple negation reduction, -——«a = —q, is an intuitionistic tautology:

1. =—=—a,aF; =—a,  double negation introduction, 3
2. o=, a7, assumption

3. —a kb —a, 1, 2, negation introduction

4. by =—a = —a, 2, implication introduction

3 The Curry-Howard Isomorphism

There is a simple, and fruitful, analogy between the positive fragment of
intuitionistic logic and the basic type constructors used in computer pro-
gramming. The idea is that o A § corresponds to a product (record) type,

!Bertrand Russell, a noted logician, philosopher, and atheist, once noted, “Grant me
a contradiction, and I'll prove that I'm the pope!”



a V 3 corresponds to a sum (tagged union) type, and o = [ corresponds
to a function type. Modus ponens describes the type of an application, the
deduction theorem corresponds to functional abstraction (lambda), and the
other rules of inference correspond to data constructors or accessors.

The constructive tautologies turn out to be precisely the types of closed
lambda terms, i.e., of the objects that can be constructed in a functional
programming language without using ground terms.

Thus, for example, it is possible to write an ML program whose type is
(aVp)={(a=7)=[(B=7) = 7|} (remember that -> associates to the
right)?:

- datatype (’a,’b) OR = First of ’a | Second of ’b;

datatype (’a,’b) OR = First of ’a | Second of ’b

- fun cases (First a) f g=1f a

= | cases (Second b) f g = g b;

val cases = fn : (’a,’b) OR -> (’a -> ’¢c) -> (’b -> ’c) -> ’c

Indeed, a closed program is a textual representation of a mental con-
struction; therefore it can be, and should be, understood as a proof of the
intuitionistic validity of its type.

4 Semantics

Early efforts to develop a satisfactory metamathematics for intuitionism
were frustrated in large part because the early intuitionists were vehemently
anti-formalist in their stance, and refused to accept that the organic activity
of mathematics could be reduced to a mechanical set of rules. Of particular
concern to philosophers of mathematics was their undefined notion of a
construction, or equivalently, of an algorithm that transformed one kind of
proof into another.

In this regard, the writings of the early intuitionists, especially Brower,
were extraordinarily opaque, and seemed intended to obscure rather than
enlighten?.

Although intuitionists eventually conceded that the lambda-definable
functions were all constructive, they did not grant that these are the only

ZNote that while SML supports anonymous product and function types, it does not
support anonymous sum types. Thus, the need for the datatype definition.

3Modern intuitionists, e.g., Errett Bishop, have been especially critical of their prede-
cessors in this regard, so there’s more going on here than just a logician’s sour grapes.



valid proof transformations. The attitude was simple, but not especially use-
ful for logicians: “I know a construction when I see one.” Thus, any formula
provable in this system is intuitionistically valid, but intuitionists reserve
the possibility that there may be other formula, not provable in this system,
which are nevertheless intuitionistically valid. As time as passed, and no
such formula has been forthcoming, this possibility has seemed increasingly
remote.

In the effort to pin the intuitionists down, a number of formal semantics
for various intuitionistic calculi have been proposed. These semantics have
been proposed in the attempt to pin the intuitionists down to a particu-
lar logical system, and in consequence typically attempt to formalize some
intuitionist’s explanation of their philosophy. This lead to the disquieting
understanding that different intuitionists often arrive at, and understand,
intuitionism in very different ways. The problem here is not just that it
means that you can only hope to pin them down one at a time (although
it does indeed mean that), but the very fact that the fact that so many
different ways of thinking lead to the same theory is a powerful argument
for the naturalness and importance of that theory. Intuitionism is not going
to go away.

The most popular semantics is Kripke’s, which is often described as
“temporal epistemic”, which is to say that it attempts to explain intuition-
ism in terms of how mathematicians acquire mathematical knowledge over
time, and which finds antecedents in Brower’s own writings.

Definition 1 A Kripke model is a tuple (W, <,|=), where W is a nonempty
set of worlds, < is a partial order on W, and = is a relation on W x Var,
where Var is the set of variables, such that for all u,v € W and all variables
a, if u <wv, and u = «, then v = a.

As usual, we use v > u as synonymous with u < v.
We extend the relation = to W x Form, where Form denotes the propo-
sitional formula, but induction on structure:

1. u =@V ifand only if u = ¢ or u = 9,

2. ulE @AY if and only if u = ¢ and u = 9,
3. u = ¢ =9 if and only if for all v > w, if v = ¢, then v = .

4. u = —p if and only if for all v > u, v £ .



Kripke semantics are sound and complete for propositional intuitionistic
logic, which is to say, ¢ is an intuitionistic tautology if and only if it holds
at every world of every Kripke model.

As a general rule, we present Kripke models graphically, with nodes
labeled according to the variables they model (=), so called ground truth,
and edges linking worlds related by <, with the greater worlds presented
above the lower worlds. Thus,

w2: &

wi:

is a simple Kripke model. Indeed, it is a particularly interesting Kripke
model, because a V = (the law of the excluded middle), =—a = a (double
negation elimination), and ((a = ) = «a) = «a (Peirce’s law) all fail at wl.

5 Some Concluding Remarks

Intuitionism began as a reaction against nonconstructive methods, and in
the early years, both intuitionists and classical mathematicians tended to
view one another as apostate, with each side trying to call the others back
to the “right” way to do mathematics.

Because both parties saw the issue as right versus wrong, neither was
intellectually prepared to understand that there was considerable merit to
the other point of view. If we can prove more classically than intuitionisti-
cally, we know more about a statement ¢ if we know it is intuitionistically
valid than if it is (merely) classically valid.

The particular utility of this “more that we know” became apparent
with the rise of computers and their application to practical problems, as
intuitionistic proofs are simply programs—mno more, but certainly no less—
and you can do things with programs that you can’t do with proofs.



6 Exercises
Problem 1 Prove that o = (6= v) Fr (a A B) = 7.

Problem 2 Show that a = (V1 —aV 3 by demonstrating that there exists
a Kripke model K = (W, <,=) and a world w € W such that w = a = (3,
but w = —aV 3.

Problem 3 Show that world w1 in the simple Kripke model in Section 4
does not satisfy Peirce’s law.

Problem 4 Consider the proof of triple negation reduction in these notes.
This seems so closely related to double negation elimination that it seems as
though it should be possible to turn a proof of one into a proof of the other.
What is the impediment that prevents us from turning the proof of triple
negation reduction into a proof of double negation elimination?

Problem 5 Show that Peirce’s law follows intuitionistically from the law of
the excluded middle, i.e., that oV —a by [( = ) = o] = «. Hint: To
apply proof by cases, it suffices to show —a, (a = () = a by a.



